A course of pure mathematics:
There are few textbooks of mathematics as well-known as Hardy's Pure Mathematics. Since its publication in 1908, this classic book has inspired successive generations of budding mathematicians at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of the mi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2008
|
Ausgabe: | 10th ed |
Schriftenreihe: | Cambridge mathematical library
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | There are few textbooks of mathematics as well-known as Hardy's Pure Mathematics. Since its publication in 1908, this classic book has inspired successive generations of budding mathematicians at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of the missionary with the rigour of the purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit. Celebrating 100 years in print with Cambridge, this edition includes a Foreword by T. W. Körner, describing the huge influence the book has had on the teaching and development of mathematics worldwide. Hardy's presentation of mathematical analysis is as valid today as when first written: students will find that his economical and energetic style of presentation is one that modern authors rarely come close to |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (509 pages) |
ISBN: | 9780511989469 |
DOI: | 10.1017/CBO9780511989469 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043942088 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2008 |||| o||u| ||||||eng d | ||
020 | |a 9780511989469 |c Online |9 978-0-511-98946-9 | ||
024 | 7 | |a 10.1017/CBO9780511989469 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511989469 | ||
035 | |a (OCoLC)1047866183 | ||
035 | |a (DE-599)BVBBV043942088 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515 |2 22 | |
084 | |a SK 400 |0 (DE-625)143237: |2 rvk | ||
100 | 1 | |a Hardy, G. H. |d 1877-1947 |e Verfasser |4 aut | |
245 | 1 | 0 | |a A course of pure mathematics |c by G.H. Hardy |
250 | |a 10th ed | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 2008 | |
300 | |a 1 online resource (509 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge mathematical library | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |g Ch. 1 |t Real Variables |g Ch. 2 |t Functions of Real Variables |g Ch. 3 |t Complex Numbers |g Ch. 4 |t Limits of Functions of a Positive Integral Variable |g Ch. 5 |t Limits of Functions of a Continuous Variable. Continuous and Discontinuous Functions |g Ch. 6 |t Derivatives and Integrals |g Ch. 7 |t Additional Theorems in the Differential and Integral Calculus |g Ch. 8 |t Convergence of Infinite Series and Infinite Integrals |g Ch. 9 |t Logarithmic, Exponential, and Circular Functions of a Real Variable |g Ch. 10 |t General Theory of the Logarithmic, Exponential, and Circular Functions |g App. I. |t proof that every equation has a root |g App. II. |t note on double limit problems |g App. III. |t infinite in analysis and geometry |g App. IV. |t infinite in analysis and geometry |
520 | |a There are few textbooks of mathematics as well-known as Hardy's Pure Mathematics. Since its publication in 1908, this classic book has inspired successive generations of budding mathematicians at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of the missionary with the rigour of the purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit. Celebrating 100 years in print with Cambridge, this edition includes a Foreword by T. W. Körner, describing the huge influence the book has had on the teaching and development of mathematics worldwide. Hardy's presentation of mathematical analysis is as valid today as when first written: students will find that his economical and energetic style of presentation is one that modern authors rarely come close to | ||
650 | 4 | |a Calculus | |
650 | 4 | |a Functions | |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integralrechnung |0 (DE-588)4027232-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reelle Variable |0 (DE-588)4202614-3 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 0 | |8 3\p |5 DE-604 | |
689 | 1 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 1 | |8 4\p |5 DE-604 | |
689 | 2 | 0 | |a Reelle Variable |0 (DE-588)4202614-3 |D s |
689 | 2 | |8 5\p |5 DE-604 | |
689 | 3 | 0 | |a Integralrechnung |0 (DE-588)4027232-1 |D s |
689 | 3 | |8 6\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-72055-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511989469 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351058 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511989469 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511989469 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884529889280 |
---|---|
any_adam_object | |
author | Hardy, G. H. 1877-1947 |
author_facet | Hardy, G. H. 1877-1947 |
author_role | aut |
author_sort | Hardy, G. H. 1877-1947 |
author_variant | g h h gh ghh |
building | Verbundindex |
bvnumber | BV043942088 |
classification_rvk | SK 400 |
collection | ZDB-20-CBO |
contents | Real Variables Functions of Real Variables Complex Numbers Limits of Functions of a Positive Integral Variable Limits of Functions of a Continuous Variable. Continuous and Discontinuous Functions Derivatives and Integrals Additional Theorems in the Differential and Integral Calculus Convergence of Infinite Series and Infinite Integrals Logarithmic, Exponential, and Circular Functions of a Real Variable General Theory of the Logarithmic, Exponential, and Circular Functions proof that every equation has a root note on double limit problems infinite in analysis and geometry |
ctrlnum | (ZDB-20-CBO)CR9780511989469 (OCoLC)1047866183 (DE-599)BVBBV043942088 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511989469 |
edition | 10th ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04442nmm a2200685zc 4500</leader><controlfield tag="001">BV043942088</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511989469</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-98946-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511989469</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511989469</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1047866183</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942088</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 400</subfield><subfield code="0">(DE-625)143237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hardy, G. H.</subfield><subfield code="d">1877-1947</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A course of pure mathematics</subfield><subfield code="c">by G.H. Hardy</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">10th ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (509 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge mathematical library</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="g">Ch. 1</subfield><subfield code="t">Real Variables</subfield><subfield code="g">Ch. 2</subfield><subfield code="t">Functions of Real Variables</subfield><subfield code="g">Ch. 3</subfield><subfield code="t">Complex Numbers</subfield><subfield code="g">Ch. 4</subfield><subfield code="t">Limits of Functions of a Positive Integral Variable</subfield><subfield code="g">Ch. 5</subfield><subfield code="t">Limits of Functions of a Continuous Variable. Continuous and Discontinuous Functions</subfield><subfield code="g">Ch. 6</subfield><subfield code="t">Derivatives and Integrals</subfield><subfield code="g">Ch. 7</subfield><subfield code="t">Additional Theorems in the Differential and Integral Calculus</subfield><subfield code="g">Ch. 8</subfield><subfield code="t">Convergence of Infinite Series and Infinite Integrals</subfield><subfield code="g">Ch. 9</subfield><subfield code="t">Logarithmic, Exponential, and Circular Functions of a Real Variable</subfield><subfield code="g">Ch. 10</subfield><subfield code="t">General Theory of the Logarithmic, Exponential, and Circular Functions</subfield><subfield code="g">App. I.</subfield><subfield code="t">proof that every equation has a root</subfield><subfield code="g">App. II.</subfield><subfield code="t">note on double limit problems</subfield><subfield code="g">App. III.</subfield><subfield code="t">infinite in analysis and geometry</subfield><subfield code="g">App. IV.</subfield><subfield code="t">infinite in analysis and geometry</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There are few textbooks of mathematics as well-known as Hardy's Pure Mathematics. Since its publication in 1908, this classic book has inspired successive generations of budding mathematicians at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of the missionary with the rigour of the purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit. Celebrating 100 years in print with Cambridge, this edition includes a Foreword by T. W. Körner, describing the huge influence the book has had on the teaching and development of mathematics worldwide. Hardy's presentation of mathematical analysis is as valid today as when first written: students will find that his economical and energetic style of presentation is one that modern authors rarely come close to</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integralrechnung</subfield><subfield code="0">(DE-588)4027232-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reelle Variable</subfield><subfield code="0">(DE-588)4202614-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Reelle Variable</subfield><subfield code="0">(DE-588)4202614-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Integralrechnung</subfield><subfield code="0">(DE-588)4027232-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-72055-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511989469</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351058</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511989469</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511989469</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Einführung Lehrbuch |
id | DE-604.BV043942088 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511989469 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351058 |
oclc_num | 1047866183 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (509 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge mathematical library |
spelling | Hardy, G. H. 1877-1947 Verfasser aut A course of pure mathematics by G.H. Hardy 10th ed Cambridge Cambridge University Press 2008 1 online resource (509 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge mathematical library Title from publisher's bibliographic system (viewed on 05 Oct 2015) Ch. 1 Real Variables Ch. 2 Functions of Real Variables Ch. 3 Complex Numbers Ch. 4 Limits of Functions of a Positive Integral Variable Ch. 5 Limits of Functions of a Continuous Variable. Continuous and Discontinuous Functions Ch. 6 Derivatives and Integrals Ch. 7 Additional Theorems in the Differential and Integral Calculus Ch. 8 Convergence of Infinite Series and Infinite Integrals Ch. 9 Logarithmic, Exponential, and Circular Functions of a Real Variable Ch. 10 General Theory of the Logarithmic, Exponential, and Circular Functions App. I. proof that every equation has a root App. II. note on double limit problems App. III. infinite in analysis and geometry App. IV. infinite in analysis and geometry There are few textbooks of mathematics as well-known as Hardy's Pure Mathematics. Since its publication in 1908, this classic book has inspired successive generations of budding mathematicians at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of the missionary with the rigour of the purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit. Celebrating 100 years in print with Cambridge, this edition includes a Foreword by T. W. Körner, describing the huge influence the book has had on the teaching and development of mathematics worldwide. Hardy's presentation of mathematical analysis is as valid today as when first written: students will find that his economical and energetic style of presentation is one that modern authors rarely come close to Calculus Functions Mathematik (DE-588)4037944-9 gnd rswk-swf Analysis (DE-588)4001865-9 gnd rswk-swf Integralrechnung (DE-588)4027232-1 gnd rswk-swf Reelle Variable (DE-588)4202614-3 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4123623-3 Lehrbuch gnd-content Analysis (DE-588)4001865-9 s 3\p DE-604 Mathematik (DE-588)4037944-9 s 4\p DE-604 Reelle Variable (DE-588)4202614-3 s 5\p DE-604 Integralrechnung (DE-588)4027232-1 s 6\p DE-604 Erscheint auch als Druckausgabe 978-0-521-72055-7 https://doi.org/10.1017/CBO9780511989469 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hardy, G. H. 1877-1947 A course of pure mathematics Real Variables Functions of Real Variables Complex Numbers Limits of Functions of a Positive Integral Variable Limits of Functions of a Continuous Variable. Continuous and Discontinuous Functions Derivatives and Integrals Additional Theorems in the Differential and Integral Calculus Convergence of Infinite Series and Infinite Integrals Logarithmic, Exponential, and Circular Functions of a Real Variable General Theory of the Logarithmic, Exponential, and Circular Functions proof that every equation has a root note on double limit problems infinite in analysis and geometry Calculus Functions Mathematik (DE-588)4037944-9 gnd Analysis (DE-588)4001865-9 gnd Integralrechnung (DE-588)4027232-1 gnd Reelle Variable (DE-588)4202614-3 gnd |
subject_GND | (DE-588)4037944-9 (DE-588)4001865-9 (DE-588)4027232-1 (DE-588)4202614-3 (DE-588)4151278-9 (DE-588)4123623-3 |
title | A course of pure mathematics |
title_alt | Real Variables Functions of Real Variables Complex Numbers Limits of Functions of a Positive Integral Variable Limits of Functions of a Continuous Variable. Continuous and Discontinuous Functions Derivatives and Integrals Additional Theorems in the Differential and Integral Calculus Convergence of Infinite Series and Infinite Integrals Logarithmic, Exponential, and Circular Functions of a Real Variable General Theory of the Logarithmic, Exponential, and Circular Functions proof that every equation has a root note on double limit problems infinite in analysis and geometry |
title_auth | A course of pure mathematics |
title_exact_search | A course of pure mathematics |
title_full | A course of pure mathematics by G.H. Hardy |
title_fullStr | A course of pure mathematics by G.H. Hardy |
title_full_unstemmed | A course of pure mathematics by G.H. Hardy |
title_short | A course of pure mathematics |
title_sort | a course of pure mathematics |
topic | Calculus Functions Mathematik (DE-588)4037944-9 gnd Analysis (DE-588)4001865-9 gnd Integralrechnung (DE-588)4027232-1 gnd Reelle Variable (DE-588)4202614-3 gnd |
topic_facet | Calculus Functions Mathematik Analysis Integralrechnung Reelle Variable Einführung Lehrbuch |
url | https://doi.org/10.1017/CBO9780511989469 |
work_keys_str_mv | AT hardygh acourseofpuremathematics |