Variational principles in mathematical physics, geometry, and economics: qualitative analysis of nonlinear equations and unilateral problems
This comprehensive introduction to the calculus of variations and its main principles also presents their real-life applications in various contexts: mathematical physics, differential geometry, and optimization in economics. Based on the authors' original work, it provides an overview of the f...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2010
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 136 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | This comprehensive introduction to the calculus of variations and its main principles also presents their real-life applications in various contexts: mathematical physics, differential geometry, and optimization in economics. Based on the authors' original work, it provides an overview of the field, with examples and exercises suitable for graduate students entering research. The method of presentation will appeal to readers with diverse backgrounds in functional analysis, differential geometry and partial differential equations. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. Since much of the material has a strong geometric flavor, the authors have supplemented the text with figures to illustrate the abstract concepts. Its extensive reference list and index also make this a valuable resource for researchers working in a variety of fields who are interested in partial differential equations and functional analysis |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xv, 368 pages) |
ISBN: | 9780511760631 |
DOI: | 10.1017/CBO9780511760631 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942083 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2010 |||| o||u| ||||||eng d | ||
020 | |a 9780511760631 |c Online |9 978-0-511-76063-1 | ||
024 | 7 | |a 10.1017/CBO9780511760631 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511760631 | ||
035 | |a (OCoLC)852654322 | ||
035 | |a (DE-599)BVBBV043942083 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.64 |2 22 | |
100 | 1 | |a Kristály, Alexandru |e Verfasser |4 aut | |
245 | 1 | 0 | |a Variational principles in mathematical physics, geometry, and economics |b qualitative analysis of nonlinear equations and unilateral problems |c Alexandru Kristály, Vicenţiu Rădulescu, Csaba Gyorgy Varga |
246 | 1 | 3 | |a Variational Principles in Mathematical Physics, Geometry, & Economics |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2010 | |
300 | |a 1 online resource (xv, 368 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 136 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Part I. Variational Principles in Mathematical Physics: 1. Variational principles -- 2. Variational inequalities -- 3. Nonlinear eigenvalue problems -- 4. Elliptic systems of gradient type -- 5. Systems with arbitrary growth nonlinearities -- 6. Scalar field systems -- 7. Competition phenomena in Dirichlet problems -- 8. Problems to Part I -- Part II. Variational Principles in Geometry: 9. Sublinear problems on Riemannian manifolds -- 10. Asymptotically critical problems on spheres -- 11. Equations with critical exponent -- 12. Problems to Part II -- Part III. Variational Principles in Economics: 13. Mathematical preliminaries -- 14. Minimization of cost-functions on manifolds -- 15. Best approximation problems on manifolds -- 16. A variational approach to Nash equilibria -- 17. Problems to Part III; Appendix A. Elements of convex analysis; Appendix B. Function spaces; Appendix C. Category and genus; Appendix D. Clarke and Degiovanni gradients; Appendix E. Elements of set-valued analysis | |
520 | |a This comprehensive introduction to the calculus of variations and its main principles also presents their real-life applications in various contexts: mathematical physics, differential geometry, and optimization in economics. Based on the authors' original work, it provides an overview of the field, with examples and exercises suitable for graduate students entering research. The method of presentation will appeal to readers with diverse backgrounds in functional analysis, differential geometry and partial differential equations. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. Since much of the material has a strong geometric flavor, the authors have supplemented the text with figures to illustrate the abstract concepts. Its extensive reference list and index also make this a valuable resource for researchers working in a variety of fields who are interested in partial differential equations and functional analysis | ||
650 | 4 | |a Calculus of variations | |
650 | 0 | 7 | |a Anwendung |0 (DE-588)4196864-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Variationsprinzip |0 (DE-588)4062354-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Variationsprinzip |0 (DE-588)4062354-3 |D s |
689 | 0 | 1 | |a Anwendung |0 (DE-588)4196864-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Rădulescu, Vicenţiu D. |d 1958- |e Sonstige |4 oth | |
700 | 1 | |a Varga, Csaba Gyorgy |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-11782-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511760631 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351053 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511760631 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511760631 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884528840704 |
---|---|
any_adam_object | |
author | Kristály, Alexandru |
author_facet | Kristály, Alexandru |
author_role | aut |
author_sort | Kristály, Alexandru |
author_variant | a k ak |
building | Verbundindex |
bvnumber | BV043942083 |
collection | ZDB-20-CBO |
contents | Part I. Variational Principles in Mathematical Physics: 1. Variational principles -- 2. Variational inequalities -- 3. Nonlinear eigenvalue problems -- 4. Elliptic systems of gradient type -- 5. Systems with arbitrary growth nonlinearities -- 6. Scalar field systems -- 7. Competition phenomena in Dirichlet problems -- 8. Problems to Part I -- Part II. Variational Principles in Geometry: 9. Sublinear problems on Riemannian manifolds -- 10. Asymptotically critical problems on spheres -- 11. Equations with critical exponent -- 12. Problems to Part II -- Part III. Variational Principles in Economics: 13. Mathematical preliminaries -- 14. Minimization of cost-functions on manifolds -- 15. Best approximation problems on manifolds -- 16. A variational approach to Nash equilibria -- 17. Problems to Part III; Appendix A. Elements of convex analysis; Appendix B. Function spaces; Appendix C. Category and genus; Appendix D. Clarke and Degiovanni gradients; Appendix E. Elements of set-valued analysis |
ctrlnum | (ZDB-20-CBO)CR9780511760631 (OCoLC)852654322 (DE-599)BVBBV043942083 |
dewey-full | 515/.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.64 |
dewey-search | 515/.64 |
dewey-sort | 3515 264 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511760631 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04239nmm a2200517zcb4500</leader><controlfield tag="001">BV043942083</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511760631</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-76063-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511760631</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511760631</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852654322</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942083</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.64</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kristály, Alexandru</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Variational principles in mathematical physics, geometry, and economics</subfield><subfield code="b">qualitative analysis of nonlinear equations and unilateral problems</subfield><subfield code="c">Alexandru Kristály, Vicenţiu Rădulescu, Csaba Gyorgy Varga</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Variational Principles in Mathematical Physics, Geometry, & Economics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 368 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Part I. Variational Principles in Mathematical Physics: 1. Variational principles -- 2. Variational inequalities -- 3. Nonlinear eigenvalue problems -- 4. Elliptic systems of gradient type -- 5. Systems with arbitrary growth nonlinearities -- 6. Scalar field systems -- 7. Competition phenomena in Dirichlet problems -- 8. Problems to Part I -- Part II. Variational Principles in Geometry: 9. Sublinear problems on Riemannian manifolds -- 10. Asymptotically critical problems on spheres -- 11. Equations with critical exponent -- 12. Problems to Part II -- Part III. Variational Principles in Economics: 13. Mathematical preliminaries -- 14. Minimization of cost-functions on manifolds -- 15. Best approximation problems on manifolds -- 16. A variational approach to Nash equilibria -- 17. Problems to Part III; Appendix A. Elements of convex analysis; Appendix B. Function spaces; Appendix C. Category and genus; Appendix D. Clarke and Degiovanni gradients; Appendix E. Elements of set-valued analysis</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This comprehensive introduction to the calculus of variations and its main principles also presents their real-life applications in various contexts: mathematical physics, differential geometry, and optimization in economics. Based on the authors' original work, it provides an overview of the field, with examples and exercises suitable for graduate students entering research. The method of presentation will appeal to readers with diverse backgrounds in functional analysis, differential geometry and partial differential equations. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. Since much of the material has a strong geometric flavor, the authors have supplemented the text with figures to illustrate the abstract concepts. Its extensive reference list and index also make this a valuable resource for researchers working in a variety of fields who are interested in partial differential equations and functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anwendung</subfield><subfield code="0">(DE-588)4196864-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsprinzip</subfield><subfield code="0">(DE-588)4062354-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Variationsprinzip</subfield><subfield code="0">(DE-588)4062354-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Anwendung</subfield><subfield code="0">(DE-588)4196864-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rădulescu, Vicenţiu D.</subfield><subfield code="d">1958-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Varga, Csaba Gyorgy</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-11782-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511760631</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351053</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511760631</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511760631</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942083 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511760631 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351053 |
oclc_num | 852654322 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xv, 368 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Kristály, Alexandru Verfasser aut Variational principles in mathematical physics, geometry, and economics qualitative analysis of nonlinear equations and unilateral problems Alexandru Kristály, Vicenţiu Rădulescu, Csaba Gyorgy Varga Variational Principles in Mathematical Physics, Geometry, & Economics Cambridge Cambridge University Press 2010 1 online resource (xv, 368 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 136 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Part I. Variational Principles in Mathematical Physics: 1. Variational principles -- 2. Variational inequalities -- 3. Nonlinear eigenvalue problems -- 4. Elliptic systems of gradient type -- 5. Systems with arbitrary growth nonlinearities -- 6. Scalar field systems -- 7. Competition phenomena in Dirichlet problems -- 8. Problems to Part I -- Part II. Variational Principles in Geometry: 9. Sublinear problems on Riemannian manifolds -- 10. Asymptotically critical problems on spheres -- 11. Equations with critical exponent -- 12. Problems to Part II -- Part III. Variational Principles in Economics: 13. Mathematical preliminaries -- 14. Minimization of cost-functions on manifolds -- 15. Best approximation problems on manifolds -- 16. A variational approach to Nash equilibria -- 17. Problems to Part III; Appendix A. Elements of convex analysis; Appendix B. Function spaces; Appendix C. Category and genus; Appendix D. Clarke and Degiovanni gradients; Appendix E. Elements of set-valued analysis This comprehensive introduction to the calculus of variations and its main principles also presents their real-life applications in various contexts: mathematical physics, differential geometry, and optimization in economics. Based on the authors' original work, it provides an overview of the field, with examples and exercises suitable for graduate students entering research. The method of presentation will appeal to readers with diverse backgrounds in functional analysis, differential geometry and partial differential equations. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. Since much of the material has a strong geometric flavor, the authors have supplemented the text with figures to illustrate the abstract concepts. Its extensive reference list and index also make this a valuable resource for researchers working in a variety of fields who are interested in partial differential equations and functional analysis Calculus of variations Anwendung (DE-588)4196864-5 gnd rswk-swf Variationsprinzip (DE-588)4062354-3 gnd rswk-swf Variationsprinzip (DE-588)4062354-3 s Anwendung (DE-588)4196864-5 s 1\p DE-604 Rădulescu, Vicenţiu D. 1958- Sonstige oth Varga, Csaba Gyorgy Sonstige oth Erscheint auch als Druckausgabe 978-0-521-11782-1 https://doi.org/10.1017/CBO9780511760631 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kristály, Alexandru Variational principles in mathematical physics, geometry, and economics qualitative analysis of nonlinear equations and unilateral problems Part I. Variational Principles in Mathematical Physics: 1. Variational principles -- 2. Variational inequalities -- 3. Nonlinear eigenvalue problems -- 4. Elliptic systems of gradient type -- 5. Systems with arbitrary growth nonlinearities -- 6. Scalar field systems -- 7. Competition phenomena in Dirichlet problems -- 8. Problems to Part I -- Part II. Variational Principles in Geometry: 9. Sublinear problems on Riemannian manifolds -- 10. Asymptotically critical problems on spheres -- 11. Equations with critical exponent -- 12. Problems to Part II -- Part III. Variational Principles in Economics: 13. Mathematical preliminaries -- 14. Minimization of cost-functions on manifolds -- 15. Best approximation problems on manifolds -- 16. A variational approach to Nash equilibria -- 17. Problems to Part III; Appendix A. Elements of convex analysis; Appendix B. Function spaces; Appendix C. Category and genus; Appendix D. Clarke and Degiovanni gradients; Appendix E. Elements of set-valued analysis Calculus of variations Anwendung (DE-588)4196864-5 gnd Variationsprinzip (DE-588)4062354-3 gnd |
subject_GND | (DE-588)4196864-5 (DE-588)4062354-3 |
title | Variational principles in mathematical physics, geometry, and economics qualitative analysis of nonlinear equations and unilateral problems |
title_alt | Variational Principles in Mathematical Physics, Geometry, & Economics |
title_auth | Variational principles in mathematical physics, geometry, and economics qualitative analysis of nonlinear equations and unilateral problems |
title_exact_search | Variational principles in mathematical physics, geometry, and economics qualitative analysis of nonlinear equations and unilateral problems |
title_full | Variational principles in mathematical physics, geometry, and economics qualitative analysis of nonlinear equations and unilateral problems Alexandru Kristály, Vicenţiu Rădulescu, Csaba Gyorgy Varga |
title_fullStr | Variational principles in mathematical physics, geometry, and economics qualitative analysis of nonlinear equations and unilateral problems Alexandru Kristály, Vicenţiu Rădulescu, Csaba Gyorgy Varga |
title_full_unstemmed | Variational principles in mathematical physics, geometry, and economics qualitative analysis of nonlinear equations and unilateral problems Alexandru Kristály, Vicenţiu Rădulescu, Csaba Gyorgy Varga |
title_short | Variational principles in mathematical physics, geometry, and economics |
title_sort | variational principles in mathematical physics geometry and economics qualitative analysis of nonlinear equations and unilateral problems |
title_sub | qualitative analysis of nonlinear equations and unilateral problems |
topic | Calculus of variations Anwendung (DE-588)4196864-5 gnd Variationsprinzip (DE-588)4062354-3 gnd |
topic_facet | Calculus of variations Anwendung Variationsprinzip |
url | https://doi.org/10.1017/CBO9780511760631 |
work_keys_str_mv | AT kristalyalexandru variationalprinciplesinmathematicalphysicsgeometryandeconomicsqualitativeanalysisofnonlinearequationsandunilateralproblems AT radulescuvicentiud variationalprinciplesinmathematicalphysicsgeometryandeconomicsqualitativeanalysisofnonlinearequationsandunilateralproblems AT vargacsabagyorgy variationalprinciplesinmathematicalphysicsgeometryandeconomicsqualitativeanalysisofnonlinearequationsandunilateralproblems AT kristalyalexandru variationalprinciplesinmathematicalphysicsgeometryeconomics AT radulescuvicentiud variationalprinciplesinmathematicalphysicsgeometryeconomics AT vargacsabagyorgy variationalprinciplesinmathematicalphysicsgeometryeconomics |