Operator algebras in dynamical systems: the theory of unbounded derivations in C*-algebras
This book is concerned with the theory of unbounded derivations in C*-algebras, a subject whose study was motivated by questions in quantum physics and statistical mechanics, and to which the author has made a considerable contribution. This is an active area of research, and one of the most ambitio...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1991
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 41 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book is concerned with the theory of unbounded derivations in C*-algebras, a subject whose study was motivated by questions in quantum physics and statistical mechanics, and to which the author has made a considerable contribution. This is an active area of research, and one of the most ambitious aims of the theory is to develop quantum statistical mechanics within the framework of the C*-theory. The presentation, which is based on lectures given in Newcastle upon Tyne and Copenhagen, concentrates on topics involving quantum statistical mechanics and differentiations on manifolds. One of the goals is to formulate the absence theorem of phase transitions in its most general form within the C* setting. For the first time, he globally constructs, within that setting, derivations for a fairly wide class of interacting models, and presents a new axiomatic treatment of the construction of time evolutions and KMS states |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 219 pages) |
ISBN: | 9780511662218 |
DOI: | 10.1017/CBO9780511662218 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942070 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1991 |||| o||u| ||||||eng d | ||
020 | |a 9780511662218 |c Online |9 978-0-511-66221-8 | ||
024 | 7 | |a 10.1017/CBO9780511662218 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511662218 | ||
035 | |a (OCoLC)849791439 | ||
035 | |a (DE-599)BVBBV043942070 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.55 |2 20 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Sakai, Shôichirô |d 1928- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Operator algebras in dynamical systems |b the theory of unbounded derivations in C*-algebras |c Shôichirô Sakai |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1991 | |
300 | |a 1 online resource (xi, 219 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 41 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book is concerned with the theory of unbounded derivations in C*-algebras, a subject whose study was motivated by questions in quantum physics and statistical mechanics, and to which the author has made a considerable contribution. This is an active area of research, and one of the most ambitious aims of the theory is to develop quantum statistical mechanics within the framework of the C*-theory. The presentation, which is based on lectures given in Newcastle upon Tyne and Copenhagen, concentrates on topics involving quantum statistical mechanics and differentiations on manifolds. One of the goals is to formulate the absence theorem of phase transitions in its most general form within the C* setting. For the first time, he globally constructs, within that setting, derivations for a fairly wide class of interacting models, and presents a new axiomatic treatment of the construction of time evolutions and KMS states | ||
650 | 4 | |a C*-algebras | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Operator theory | |
650 | 0 | 7 | |a C-Stern-Algebra |0 (DE-588)4136693-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operatoralgebra |0 (DE-588)4129366-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differenzierbares dynamisches System |0 (DE-588)4137931-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a C-Stern-Algebra |0 (DE-588)4136693-1 |D s |
689 | 0 | 1 | |a Differenzierbares dynamisches System |0 (DE-588)4137931-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Operatoralgebra |0 (DE-588)4129366-6 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-06021-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-40096-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511662218 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351040 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511662218 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511662218 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884506820608 |
---|---|
any_adam_object | |
author | Sakai, Shôichirô 1928- |
author_facet | Sakai, Shôichirô 1928- |
author_role | aut |
author_sort | Sakai, Shôichirô 1928- |
author_variant | s s ss |
building | Verbundindex |
bvnumber | BV043942070 |
classification_rvk | SK 600 SK 620 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511662218 (OCoLC)849791439 (DE-599)BVBBV043942070 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511662218 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03641nmm a2200637zcb4500</leader><controlfield tag="001">BV043942070</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662218</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66221-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511662218</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511662218</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849791439</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942070</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sakai, Shôichirô</subfield><subfield code="d">1928-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Operator algebras in dynamical systems</subfield><subfield code="b">the theory of unbounded derivations in C*-algebras</subfield><subfield code="c">Shôichirô Sakai</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 219 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 41</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is concerned with the theory of unbounded derivations in C*-algebras, a subject whose study was motivated by questions in quantum physics and statistical mechanics, and to which the author has made a considerable contribution. This is an active area of research, and one of the most ambitious aims of the theory is to develop quantum statistical mechanics within the framework of the C*-theory. The presentation, which is based on lectures given in Newcastle upon Tyne and Copenhagen, concentrates on topics involving quantum statistical mechanics and differentiations on manifolds. One of the goals is to formulate the absence theorem of phase transitions in its most general form within the C* setting. For the first time, he globally constructs, within that setting, derivations for a fairly wide class of interacting models, and presents a new axiomatic treatment of the construction of time evolutions and KMS states</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">C*-algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">C-Stern-Algebra</subfield><subfield code="0">(DE-588)4136693-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatoralgebra</subfield><subfield code="0">(DE-588)4129366-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbares dynamisches System</subfield><subfield code="0">(DE-588)4137931-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">C-Stern-Algebra</subfield><subfield code="0">(DE-588)4136693-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Differenzierbares dynamisches System</subfield><subfield code="0">(DE-588)4137931-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Operatoralgebra</subfield><subfield code="0">(DE-588)4129366-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-06021-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-40096-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511662218</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351040</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662218</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662218</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942070 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511662218 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351040 |
oclc_num | 849791439 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xi, 219 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Sakai, Shôichirô 1928- Verfasser aut Operator algebras in dynamical systems the theory of unbounded derivations in C*-algebras Shôichirô Sakai Cambridge Cambridge University Press 1991 1 online resource (xi, 219 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 41 Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book is concerned with the theory of unbounded derivations in C*-algebras, a subject whose study was motivated by questions in quantum physics and statistical mechanics, and to which the author has made a considerable contribution. This is an active area of research, and one of the most ambitious aims of the theory is to develop quantum statistical mechanics within the framework of the C*-theory. The presentation, which is based on lectures given in Newcastle upon Tyne and Copenhagen, concentrates on topics involving quantum statistical mechanics and differentiations on manifolds. One of the goals is to formulate the absence theorem of phase transitions in its most general form within the C* setting. For the first time, he globally constructs, within that setting, derivations for a fairly wide class of interacting models, and presents a new axiomatic treatment of the construction of time evolutions and KMS states C*-algebras Differentiable dynamical systems Harmonic analysis Operator theory C-Stern-Algebra (DE-588)4136693-1 gnd rswk-swf Operatoralgebra (DE-588)4129366-6 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Differenzierbares dynamisches System (DE-588)4137931-7 gnd rswk-swf C-Stern-Algebra (DE-588)4136693-1 s Differenzierbares dynamisches System (DE-588)4137931-7 s 1\p DE-604 Harmonische Analyse (DE-588)4023453-8 s 2\p DE-604 Operatoralgebra (DE-588)4129366-6 s 3\p DE-604 Erscheint auch als Druckausgabe 978-0-521-06021-9 Erscheint auch als Druckausgabe 978-0-521-40096-1 https://doi.org/10.1017/CBO9780511662218 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sakai, Shôichirô 1928- Operator algebras in dynamical systems the theory of unbounded derivations in C*-algebras C*-algebras Differentiable dynamical systems Harmonic analysis Operator theory C-Stern-Algebra (DE-588)4136693-1 gnd Operatoralgebra (DE-588)4129366-6 gnd Harmonische Analyse (DE-588)4023453-8 gnd Differenzierbares dynamisches System (DE-588)4137931-7 gnd |
subject_GND | (DE-588)4136693-1 (DE-588)4129366-6 (DE-588)4023453-8 (DE-588)4137931-7 |
title | Operator algebras in dynamical systems the theory of unbounded derivations in C*-algebras |
title_auth | Operator algebras in dynamical systems the theory of unbounded derivations in C*-algebras |
title_exact_search | Operator algebras in dynamical systems the theory of unbounded derivations in C*-algebras |
title_full | Operator algebras in dynamical systems the theory of unbounded derivations in C*-algebras Shôichirô Sakai |
title_fullStr | Operator algebras in dynamical systems the theory of unbounded derivations in C*-algebras Shôichirô Sakai |
title_full_unstemmed | Operator algebras in dynamical systems the theory of unbounded derivations in C*-algebras Shôichirô Sakai |
title_short | Operator algebras in dynamical systems |
title_sort | operator algebras in dynamical systems the theory of unbounded derivations in c algebras |
title_sub | the theory of unbounded derivations in C*-algebras |
topic | C*-algebras Differentiable dynamical systems Harmonic analysis Operator theory C-Stern-Algebra (DE-588)4136693-1 gnd Operatoralgebra (DE-588)4129366-6 gnd Harmonische Analyse (DE-588)4023453-8 gnd Differenzierbares dynamisches System (DE-588)4137931-7 gnd |
topic_facet | C*-algebras Differentiable dynamical systems Harmonic analysis Operator theory C-Stern-Algebra Operatoralgebra Harmonische Analyse Differenzierbares dynamisches System |
url | https://doi.org/10.1017/CBO9780511662218 |
work_keys_str_mv | AT sakaishoichiro operatoralgebrasindynamicalsystemsthetheoryofunboundedderivationsincalgebras |