Stable domination and independence in algebraically closed valued fields:
This book addresses a gap in the model-theoretic understanding of valued fields that had limited the interactions of model theory with geometry. It contains significant developments in both pure and applied model theory. Part I of the book is a study of stably dominated types. These form a subset of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2008
|
Schriftenreihe: | Lecture notes in logic
30 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book addresses a gap in the model-theoretic understanding of valued fields that had limited the interactions of model theory with geometry. It contains significant developments in both pure and applied model theory. Part I of the book is a study of stably dominated types. These form a subset of the type space of a theory that behaves in many ways like the space of types in a stable theory. This part begins with an introduction to the key ideas of stability theory for stably dominated types. Part II continues with an outline of some classical results in the model theory of valued fields and explores the application of stable domination to algebraically closed valued fields. The research presented here is made accessible to the general model theorist by the inclusion of the introductory sections of each part |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 182 pages) |
ISBN: | 9780511546471 |
DOI: | 10.1017/CBO9780511546471 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942053 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2008 |||| o||u| ||||||eng d | ||
020 | |a 9780511546471 |c Online |9 978-0-511-54647-1 | ||
024 | 7 | |a 10.1017/CBO9780511546471 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511546471 | ||
035 | |a (OCoLC)850496126 | ||
035 | |a (DE-599)BVBBV043942053 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 511.3/4 |2 22 | |
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
100 | 1 | |a Haskell, Deirdre |d 1963- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stable domination and independence in algebraically closed valued fields |c Deirdre Haskell, Ehu Hrushovski, Dugald Macpherson |
246 | 1 | 3 | |a Stable Domination & Independence in Algebraically Closed Valued Fields |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2008 | |
300 | |a 1 online resource (xi, 182 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture notes in logic |v 30 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |g Ch. 1 |t Introduction |g pt. 1 |t Stable Domination |g Ch. 2 |t Some background on stability theory |g Ch. 3 |t Definition and basic properties of St[subscript C] |g Ch. 4 |t Invariant types and change of base |g Ch. 5 |t A combinatorial lemma |g Ch. 6 |t Strong codes for germs |g pt. 2 |t Independence in ACVF |g Ch. 7 |t Some background on algebraically closed valued fields |g Ch. 8 |t Sequential independence |g Ch. 9 |t Growth of the stable part |g Ch. 10 |t Types orthogonal to [Gamma] |g Ch. 11 |t Opacity and prime resolutions |g Ch. 12 |t Maximally complete fields and domination |g Ch. 13 |t Invariant types |g Ch. 14 |t A maximum modulus principle |g Ch. 15 |t Canonical bases and independence given by modules |g Ch. 16 |t Other Henselian fields |
520 | |a This book addresses a gap in the model-theoretic understanding of valued fields that had limited the interactions of model theory with geometry. It contains significant developments in both pure and applied model theory. Part I of the book is a study of stably dominated types. These form a subset of the type space of a theory that behaves in many ways like the space of types in a stable theory. This part begins with an introduction to the key ideas of stability theory for stably dominated types. Part II continues with an outline of some classical results in the model theory of valued fields and explores the application of stable domination to algebraically closed valued fields. The research presented here is made accessible to the general model theorist by the inclusion of the introductory sections of each part | ||
650 | 4 | |a Model theory | |
650 | 4 | |a Valued fields | |
650 | 4 | |a Domination (Graph theory) | |
700 | 1 | |a Hrushovski, Ehud |d 1959- |e Sonstige |4 oth | |
700 | 1 | |a Macpherson, Dugald |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-33515-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-88981-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511546471 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351023 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511546471 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511546471 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884460683264 |
---|---|
any_adam_object | |
author | Haskell, Deirdre 1963- |
author_facet | Haskell, Deirdre 1963- |
author_role | aut |
author_sort | Haskell, Deirdre 1963- |
author_variant | d h dh |
building | Verbundindex |
bvnumber | BV043942053 |
classification_rvk | SK 130 |
collection | ZDB-20-CBO |
contents | Introduction Stable Domination Some background on stability theory Definition and basic properties of St[subscript C] Invariant types and change of base A combinatorial lemma Strong codes for germs Independence in ACVF Some background on algebraically closed valued fields Sequential independence Growth of the stable part Types orthogonal to [Gamma] Opacity and prime resolutions Maximally complete fields and domination Invariant types A maximum modulus principle Canonical bases and independence given by modules Other Henselian fields |
ctrlnum | (ZDB-20-CBO)CR9780511546471 (OCoLC)850496126 (DE-599)BVBBV043942053 |
dewey-full | 511.3/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/4 |
dewey-search | 511.3/4 |
dewey-sort | 3511.3 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511546471 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03450nmm a2200493zcb4500</leader><controlfield tag="001">BV043942053</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511546471</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54647-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511546471</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511546471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850496126</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942053</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/4</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haskell, Deirdre</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stable domination and independence in algebraically closed valued fields</subfield><subfield code="c">Deirdre Haskell, Ehu Hrushovski, Dugald Macpherson</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Stable Domination & Independence in Algebraically Closed Valued Fields</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 182 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture notes in logic</subfield><subfield code="v">30</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="g">Ch. 1</subfield><subfield code="t">Introduction</subfield><subfield code="g">pt. 1</subfield><subfield code="t">Stable Domination</subfield><subfield code="g">Ch. 2</subfield><subfield code="t">Some background on stability theory</subfield><subfield code="g">Ch. 3</subfield><subfield code="t">Definition and basic properties of St[subscript C]</subfield><subfield code="g">Ch. 4</subfield><subfield code="t">Invariant types and change of base</subfield><subfield code="g">Ch. 5</subfield><subfield code="t">A combinatorial lemma</subfield><subfield code="g">Ch. 6</subfield><subfield code="t">Strong codes for germs</subfield><subfield code="g">pt. 2</subfield><subfield code="t">Independence in ACVF</subfield><subfield code="g">Ch. 7</subfield><subfield code="t">Some background on algebraically closed valued fields</subfield><subfield code="g">Ch. 8</subfield><subfield code="t">Sequential independence</subfield><subfield code="g">Ch. 9</subfield><subfield code="t">Growth of the stable part</subfield><subfield code="g">Ch. 10</subfield><subfield code="t">Types orthogonal to [Gamma]</subfield><subfield code="g">Ch. 11</subfield><subfield code="t">Opacity and prime resolutions</subfield><subfield code="g">Ch. 12</subfield><subfield code="t">Maximally complete fields and domination</subfield><subfield code="g">Ch. 13</subfield><subfield code="t">Invariant types</subfield><subfield code="g">Ch. 14</subfield><subfield code="t">A maximum modulus principle</subfield><subfield code="g">Ch. 15</subfield><subfield code="t">Canonical bases and independence given by modules</subfield><subfield code="g">Ch. 16</subfield><subfield code="t">Other Henselian fields</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book addresses a gap in the model-theoretic understanding of valued fields that had limited the interactions of model theory with geometry. It contains significant developments in both pure and applied model theory. Part I of the book is a study of stably dominated types. These form a subset of the type space of a theory that behaves in many ways like the space of types in a stable theory. This part begins with an introduction to the key ideas of stability theory for stably dominated types. Part II continues with an outline of some classical results in the model theory of valued fields and explores the application of stable domination to algebraically closed valued fields. The research presented here is made accessible to the general model theorist by the inclusion of the introductory sections of each part</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Valued fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Domination (Graph theory)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hrushovski, Ehud</subfield><subfield code="d">1959-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Macpherson, Dugald</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-33515-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-88981-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511546471</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351023</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546471</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546471</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942053 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511546471 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351023 |
oclc_num | 850496126 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xi, 182 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Lecture notes in logic |
spelling | Haskell, Deirdre 1963- Verfasser aut Stable domination and independence in algebraically closed valued fields Deirdre Haskell, Ehu Hrushovski, Dugald Macpherson Stable Domination & Independence in Algebraically Closed Valued Fields Cambridge Cambridge University Press 2008 1 online resource (xi, 182 pages) txt rdacontent c rdamedia cr rdacarrier Lecture notes in logic 30 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Ch. 1 Introduction pt. 1 Stable Domination Ch. 2 Some background on stability theory Ch. 3 Definition and basic properties of St[subscript C] Ch. 4 Invariant types and change of base Ch. 5 A combinatorial lemma Ch. 6 Strong codes for germs pt. 2 Independence in ACVF Ch. 7 Some background on algebraically closed valued fields Ch. 8 Sequential independence Ch. 9 Growth of the stable part Ch. 10 Types orthogonal to [Gamma] Ch. 11 Opacity and prime resolutions Ch. 12 Maximally complete fields and domination Ch. 13 Invariant types Ch. 14 A maximum modulus principle Ch. 15 Canonical bases and independence given by modules Ch. 16 Other Henselian fields This book addresses a gap in the model-theoretic understanding of valued fields that had limited the interactions of model theory with geometry. It contains significant developments in both pure and applied model theory. Part I of the book is a study of stably dominated types. These form a subset of the type space of a theory that behaves in many ways like the space of types in a stable theory. This part begins with an introduction to the key ideas of stability theory for stably dominated types. Part II continues with an outline of some classical results in the model theory of valued fields and explores the application of stable domination to algebraically closed valued fields. The research presented here is made accessible to the general model theorist by the inclusion of the introductory sections of each part Model theory Valued fields Domination (Graph theory) Hrushovski, Ehud 1959- Sonstige oth Macpherson, Dugald Sonstige oth Erscheint auch als Druckausgabe 978-0-521-33515-7 Erscheint auch als Druckausgabe 978-0-521-88981-0 https://doi.org/10.1017/CBO9780511546471 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Haskell, Deirdre 1963- Stable domination and independence in algebraically closed valued fields Introduction Stable Domination Some background on stability theory Definition and basic properties of St[subscript C] Invariant types and change of base A combinatorial lemma Strong codes for germs Independence in ACVF Some background on algebraically closed valued fields Sequential independence Growth of the stable part Types orthogonal to [Gamma] Opacity and prime resolutions Maximally complete fields and domination Invariant types A maximum modulus principle Canonical bases and independence given by modules Other Henselian fields Model theory Valued fields Domination (Graph theory) |
title | Stable domination and independence in algebraically closed valued fields |
title_alt | Stable Domination & Independence in Algebraically Closed Valued Fields Introduction Stable Domination Some background on stability theory Definition and basic properties of St[subscript C] Invariant types and change of base A combinatorial lemma Strong codes for germs Independence in ACVF Some background on algebraically closed valued fields Sequential independence Growth of the stable part Types orthogonal to [Gamma] Opacity and prime resolutions Maximally complete fields and domination Invariant types A maximum modulus principle Canonical bases and independence given by modules Other Henselian fields |
title_auth | Stable domination and independence in algebraically closed valued fields |
title_exact_search | Stable domination and independence in algebraically closed valued fields |
title_full | Stable domination and independence in algebraically closed valued fields Deirdre Haskell, Ehu Hrushovski, Dugald Macpherson |
title_fullStr | Stable domination and independence in algebraically closed valued fields Deirdre Haskell, Ehu Hrushovski, Dugald Macpherson |
title_full_unstemmed | Stable domination and independence in algebraically closed valued fields Deirdre Haskell, Ehu Hrushovski, Dugald Macpherson |
title_short | Stable domination and independence in algebraically closed valued fields |
title_sort | stable domination and independence in algebraically closed valued fields |
topic | Model theory Valued fields Domination (Graph theory) |
topic_facet | Model theory Valued fields Domination (Graph theory) |
url | https://doi.org/10.1017/CBO9780511546471 |
work_keys_str_mv | AT haskelldeirdre stabledominationandindependenceinalgebraicallyclosedvaluedfields AT hrushovskiehud stabledominationandindependenceinalgebraicallyclosedvaluedfields AT macphersondugald stabledominationandindependenceinalgebraicallyclosedvaluedfields AT haskelldeirdre stabledominationindependenceinalgebraicallyclosedvaluedfields AT hrushovskiehud stabledominationindependenceinalgebraicallyclosedvaluedfields AT macphersondugald stabledominationindependenceinalgebraicallyclosedvaluedfields |