Introduction to Möbius differential geometry:
This book introduces the reader to the geometry of surfaces and submanifolds in the conformal n-sphere. Various models for Möbius geometry are presented: the classical projective model, the quaternionic approach, and an approach that uses the Clifford algebra of the space of homogeneous coordinates...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2003
|
Schriftenreihe: | London Mathematical Society lecture note series
300 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book introduces the reader to the geometry of surfaces and submanifolds in the conformal n-sphere. Various models for Möbius geometry are presented: the classical projective model, the quaternionic approach, and an approach that uses the Clifford algebra of the space of homogeneous coordinates of the classical model; the use of 2-by-2 matrices in this context is elaborated. For each model in turn applications are discussed. Topics comprise conformally flat hypersurfaces, isothermic surfaces and their transformation theory, Willmore surfaces, orthogonal systems and the Ribaucour transformation, as well as analogous discrete theories for isothermic surfaces and orthogonal systems. Certain relations with curved flats, a particular type of integrable system, are revealed. Thus this book will serve both as an introduction to newcomers (with background in Riemannian geometry and elementary differential geometry) and as a reference work for researchers |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 413 pages) |
ISBN: | 9780511546693 |
DOI: | 10.1017/CBO9780511546693 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942042 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780511546693 |c Online |9 978-0-511-54669-3 | ||
024 | 7 | |a 10.1017/CBO9780511546693 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511546693 | ||
035 | |a (OCoLC)850501532 | ||
035 | |a (DE-599)BVBBV043942042 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516.3/6 |2 21 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Hertrich-Jeromin, Udo |d 1965- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to Möbius differential geometry |c Udo Hertrich-Jeromin |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2003 | |
300 | |a 1 online resource (xi, 413 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 300 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Preliminaries: the Riemannian point of view -- The projective model -- Application: conformally flat hypersurfaces -- Application: isothermic and Willmore surfaces -- A quaternionic model -- Application: smooth and discrete isothermic surfaces -- Clifford algebra model -- A Clifford algebra model: Vahlen matrices -- Applications: orthogonal systems, isothermic surfaces | |
520 | |a This book introduces the reader to the geometry of surfaces and submanifolds in the conformal n-sphere. Various models for Möbius geometry are presented: the classical projective model, the quaternionic approach, and an approach that uses the Clifford algebra of the space of homogeneous coordinates of the classical model; the use of 2-by-2 matrices in this context is elaborated. For each model in turn applications are discussed. Topics comprise conformally flat hypersurfaces, isothermic surfaces and their transformation theory, Willmore surfaces, orthogonal systems and the Ribaucour transformation, as well as analogous discrete theories for isothermic surfaces and orthogonal systems. Certain relations with curved flats, a particular type of integrable system, are revealed. Thus this book will serve both as an introduction to newcomers (with background in Riemannian geometry and elementary differential geometry) and as a reference work for researchers | ||
650 | 4 | |a Geometry, Differential | |
650 | 0 | 7 | |a Möbius-Geometrie |0 (DE-588)4750877-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Möbius-Geometrie |0 (DE-588)4750877-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-53569-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511546693 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351012 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511546693 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511546693 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884436566016 |
---|---|
any_adam_object | |
author | Hertrich-Jeromin, Udo 1965- |
author_facet | Hertrich-Jeromin, Udo 1965- |
author_role | aut |
author_sort | Hertrich-Jeromin, Udo 1965- |
author_variant | u h j uhj |
building | Verbundindex |
bvnumber | BV043942042 |
classification_rvk | SI 320 SK 350 SK 370 |
collection | ZDB-20-CBO |
contents | Preliminaries: the Riemannian point of view -- The projective model -- Application: conformally flat hypersurfaces -- Application: isothermic and Willmore surfaces -- A quaternionic model -- Application: smooth and discrete isothermic surfaces -- Clifford algebra model -- A Clifford algebra model: Vahlen matrices -- Applications: orthogonal systems, isothermic surfaces |
ctrlnum | (ZDB-20-CBO)CR9780511546693 (OCoLC)850501532 (DE-599)BVBBV043942042 |
dewey-full | 516.3/6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/6 |
dewey-search | 516.3/6 |
dewey-sort | 3516.3 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511546693 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03502nmm a2200541zcb4500</leader><controlfield tag="001">BV043942042</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511546693</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54669-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511546693</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511546693</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850501532</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942042</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/6</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hertrich-Jeromin, Udo</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Möbius differential geometry</subfield><subfield code="c">Udo Hertrich-Jeromin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 413 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">300</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Preliminaries: the Riemannian point of view -- The projective model -- Application: conformally flat hypersurfaces -- Application: isothermic and Willmore surfaces -- A quaternionic model -- Application: smooth and discrete isothermic surfaces -- Clifford algebra model -- A Clifford algebra model: Vahlen matrices -- Applications: orthogonal systems, isothermic surfaces</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book introduces the reader to the geometry of surfaces and submanifolds in the conformal n-sphere. Various models for Möbius geometry are presented: the classical projective model, the quaternionic approach, and an approach that uses the Clifford algebra of the space of homogeneous coordinates of the classical model; the use of 2-by-2 matrices in this context is elaborated. For each model in turn applications are discussed. Topics comprise conformally flat hypersurfaces, isothermic surfaces and their transformation theory, Willmore surfaces, orthogonal systems and the Ribaucour transformation, as well as analogous discrete theories for isothermic surfaces and orthogonal systems. Certain relations with curved flats, a particular type of integrable system, are revealed. Thus this book will serve both as an introduction to newcomers (with background in Riemannian geometry and elementary differential geometry) and as a reference work for researchers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Möbius-Geometrie</subfield><subfield code="0">(DE-588)4750877-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Möbius-Geometrie</subfield><subfield code="0">(DE-588)4750877-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-53569-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511546693</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351012</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546693</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546693</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942042 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511546693 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351012 |
oclc_num | 850501532 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xi, 413 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Hertrich-Jeromin, Udo 1965- Verfasser aut Introduction to Möbius differential geometry Udo Hertrich-Jeromin Cambridge Cambridge University Press 2003 1 online resource (xi, 413 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 300 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Preliminaries: the Riemannian point of view -- The projective model -- Application: conformally flat hypersurfaces -- Application: isothermic and Willmore surfaces -- A quaternionic model -- Application: smooth and discrete isothermic surfaces -- Clifford algebra model -- A Clifford algebra model: Vahlen matrices -- Applications: orthogonal systems, isothermic surfaces This book introduces the reader to the geometry of surfaces and submanifolds in the conformal n-sphere. Various models for Möbius geometry are presented: the classical projective model, the quaternionic approach, and an approach that uses the Clifford algebra of the space of homogeneous coordinates of the classical model; the use of 2-by-2 matrices in this context is elaborated. For each model in turn applications are discussed. Topics comprise conformally flat hypersurfaces, isothermic surfaces and their transformation theory, Willmore surfaces, orthogonal systems and the Ribaucour transformation, as well as analogous discrete theories for isothermic surfaces and orthogonal systems. Certain relations with curved flats, a particular type of integrable system, are revealed. Thus this book will serve both as an introduction to newcomers (with background in Riemannian geometry and elementary differential geometry) and as a reference work for researchers Geometry, Differential Möbius-Geometrie (DE-588)4750877-2 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Möbius-Geometrie (DE-588)4750877-2 s 1\p DE-604 Differentialgeometrie (DE-588)4012248-7 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-53569-4 https://doi.org/10.1017/CBO9780511546693 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hertrich-Jeromin, Udo 1965- Introduction to Möbius differential geometry Preliminaries: the Riemannian point of view -- The projective model -- Application: conformally flat hypersurfaces -- Application: isothermic and Willmore surfaces -- A quaternionic model -- Application: smooth and discrete isothermic surfaces -- Clifford algebra model -- A Clifford algebra model: Vahlen matrices -- Applications: orthogonal systems, isothermic surfaces Geometry, Differential Möbius-Geometrie (DE-588)4750877-2 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
subject_GND | (DE-588)4750877-2 (DE-588)4012248-7 |
title | Introduction to Möbius differential geometry |
title_auth | Introduction to Möbius differential geometry |
title_exact_search | Introduction to Möbius differential geometry |
title_full | Introduction to Möbius differential geometry Udo Hertrich-Jeromin |
title_fullStr | Introduction to Möbius differential geometry Udo Hertrich-Jeromin |
title_full_unstemmed | Introduction to Möbius differential geometry Udo Hertrich-Jeromin |
title_short | Introduction to Möbius differential geometry |
title_sort | introduction to mobius differential geometry |
topic | Geometry, Differential Möbius-Geometrie (DE-588)4750877-2 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
topic_facet | Geometry, Differential Möbius-Geometrie Differentialgeometrie |
url | https://doi.org/10.1017/CBO9780511546693 |
work_keys_str_mv | AT hertrichjerominudo introductiontomobiusdifferentialgeometry |