Quantum fields on a lattice:
This book presents a comprehensive and coherent account of the theory of quantum fields on a lattice, an essential technique for the study of the strong and electroweak nuclear interactions. Quantum field theory describes basic physical phenomena over an extremely wide range of length or energy scal...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1994
|
Schriftenreihe: | Cambridge monographs on mathematical physics
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | This book presents a comprehensive and coherent account of the theory of quantum fields on a lattice, an essential technique for the study of the strong and electroweak nuclear interactions. Quantum field theory describes basic physical phenomena over an extremely wide range of length or energy scales. Quantum fields exist in space and time, which can be approximated by a set of lattice points. This approximation allows the application of powerful analytical and numerical techniques, and has provided a powerful tool for the study of both the strong and the electroweak interaction. After introductory chapters on scalar fields, gauge fields and fermion fields, the book studies quarks and gluons in QCD and fermions and bosons in the electroweak theory. The last chapter is devoted to numerical simulation algorithms which have been used in recent large-scale numerical simulations. The book will be valuable for graduate students and researchers in theoretical physics, elementary particle physics, and field theory, interested in non-perturbative approximations and numerical simulations of quantum field phenomena |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xii, 491 pages) |
ISBN: | 9780511470783 |
DOI: | 10.1017/CBO9780511470783 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043942018 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1994 |||| o||u| ||||||eng d | ||
020 | |a 9780511470783 |c Online |9 978-0-511-47078-3 | ||
024 | 7 | |a 10.1017/CBO9780511470783 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511470783 | ||
035 | |a (OCoLC)849895322 | ||
035 | |a (DE-599)BVBBV043942018 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 530.1/43 |2 20 | |
084 | |a UO 4000 |0 (DE-625)146237: |2 rvk | ||
084 | |a UO 4020 |0 (DE-625)146239: |2 rvk | ||
100 | 1 | |a Montvay, I. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quantum fields on a lattice |c István Montvay, Gernot Münster |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1994 | |
300 | |a 1 online resource (xii, 491 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on mathematical physics | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a 1. Introduction. 1.1. Historical remarks. 1.2. Path integral in quantum mechanics. 1.3. Euclidean quantum field theory. 1.4. Euclidean functional integrals. 1.5. Quantum field theory on a lattice. 1.6. Continuum limit and critical behaviour. 1.7. Renormalization group equations. 1.8. Thermodynamics of quantum fields -- 2. Scalar fields. 2.1. [phi [superscript 4]] model on the lattice. 2.2. Perturbation theory. 2.3. Hopping parameter expansions. 2.4. Luscher-Weisz solution and triviality of the continuum limit. 2.5. Finite-volume effects. 2.6. N-component model -- 3. Gauge fields. 3.1. Continuum gauge fields. 3.2. Lattice gauge fields and Wilson's action. 3.3. Perturbation theory. 3.4. Strong-coupling expansion. 3.5. Static quark potential. 3.6. Glueball spectrum. 3.7. Phase structure of lattice gauge theory -- 4. Fermion fields. 4.1. Fermionic variables. 4.2. Wilson fermions. 4.3. Kogut-Susskind staggered fermions. 4.4. Nielsen-Ninomiya theorem and mirror fermions. 4.5. QED on the lattice | |
505 | 8 | |a 5. Quantum chromodynamics. 5.1. Lattice action and continuum limit. 5.2. Hadron spectrum. 5.3. Broken chiral symmetry on the lattice. 5.4. Hadron thermodynamics -- 6. Higgs and Yukawa models. 6.1. Lattice Higgs models. 6.2. Lattice Yukawa models -- 7. Simulation algorithms. 7.1. Numerical simulation and Markov processes. 7.2. Metropolis algorithms. 7.3. Heatbath algorithms. 7.4. Fermions in numerical simulations. 7.5. Fermion algorithms based on differential equations. 7.6. Hybrid Monte Carlo algorithms. 7.7. Cluster algorithms -- 8. Appendix. 8.1. Notation conventions and basic formulas | |
520 | |a This book presents a comprehensive and coherent account of the theory of quantum fields on a lattice, an essential technique for the study of the strong and electroweak nuclear interactions. Quantum field theory describes basic physical phenomena over an extremely wide range of length or energy scales. Quantum fields exist in space and time, which can be approximated by a set of lattice points. This approximation allows the application of powerful analytical and numerical techniques, and has provided a powerful tool for the study of both the strong and the electroweak interaction. After introductory chapters on scalar fields, gauge fields and fermion fields, the book studies quarks and gluons in QCD and fermions and bosons in the electroweak theory. The last chapter is devoted to numerical simulation algorithms which have been used in recent large-scale numerical simulations. The book will be valuable for graduate students and researchers in theoretical physics, elementary particle physics, and field theory, interested in non-perturbative approximations and numerical simulations of quantum field phenomena | ||
650 | 4 | |a Lattice field theory | |
650 | 4 | |a Quantum field theory | |
650 | 4 | |a Electroweak interactions | |
650 | 4 | |a Gauge fields (Physics) | |
650 | 0 | 7 | |a Gitterfeldtheorie |0 (DE-588)4296098-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gitterfeldtheorie |0 (DE-588)4296098-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Münster, Gernot |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-40432-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-59917-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511470783 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350988 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511470783 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511470783 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884392525824 |
---|---|
any_adam_object | |
author | Montvay, I. |
author_facet | Montvay, I. |
author_role | aut |
author_sort | Montvay, I. |
author_variant | i m im |
building | Verbundindex |
bvnumber | BV043942018 |
classification_rvk | UO 4000 UO 4020 |
collection | ZDB-20-CBO |
contents | 1. Introduction. 1.1. Historical remarks. 1.2. Path integral in quantum mechanics. 1.3. Euclidean quantum field theory. 1.4. Euclidean functional integrals. 1.5. Quantum field theory on a lattice. 1.6. Continuum limit and critical behaviour. 1.7. Renormalization group equations. 1.8. Thermodynamics of quantum fields -- 2. Scalar fields. 2.1. [phi [superscript 4]] model on the lattice. 2.2. Perturbation theory. 2.3. Hopping parameter expansions. 2.4. Luscher-Weisz solution and triviality of the continuum limit. 2.5. Finite-volume effects. 2.6. N-component model -- 3. Gauge fields. 3.1. Continuum gauge fields. 3.2. Lattice gauge fields and Wilson's action. 3.3. Perturbation theory. 3.4. Strong-coupling expansion. 3.5. Static quark potential. 3.6. Glueball spectrum. 3.7. Phase structure of lattice gauge theory -- 4. Fermion fields. 4.1. Fermionic variables. 4.2. Wilson fermions. 4.3. Kogut-Susskind staggered fermions. 4.4. Nielsen-Ninomiya theorem and mirror fermions. 4.5. QED on the lattice 5. Quantum chromodynamics. 5.1. Lattice action and continuum limit. 5.2. Hadron spectrum. 5.3. Broken chiral symmetry on the lattice. 5.4. Hadron thermodynamics -- 6. Higgs and Yukawa models. 6.1. Lattice Higgs models. 6.2. Lattice Yukawa models -- 7. Simulation algorithms. 7.1. Numerical simulation and Markov processes. 7.2. Metropolis algorithms. 7.3. Heatbath algorithms. 7.4. Fermions in numerical simulations. 7.5. Fermion algorithms based on differential equations. 7.6. Hybrid Monte Carlo algorithms. 7.7. Cluster algorithms -- 8. Appendix. 8.1. Notation conventions and basic formulas |
ctrlnum | (ZDB-20-CBO)CR9780511470783 (OCoLC)849895322 (DE-599)BVBBV043942018 |
dewey-full | 530.1/43 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1/43 |
dewey-search | 530.1/43 |
dewey-sort | 3530.1 243 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1017/CBO9780511470783 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04815nmm a2200553zc 4500</leader><controlfield tag="001">BV043942018</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511470783</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-47078-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511470783</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511470783</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849895322</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942018</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1/43</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4020</subfield><subfield code="0">(DE-625)146239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Montvay, I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum fields on a lattice</subfield><subfield code="c">István Montvay, Gernot Münster</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 491 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Introduction. 1.1. Historical remarks. 1.2. Path integral in quantum mechanics. 1.3. Euclidean quantum field theory. 1.4. Euclidean functional integrals. 1.5. Quantum field theory on a lattice. 1.6. Continuum limit and critical behaviour. 1.7. Renormalization group equations. 1.8. Thermodynamics of quantum fields -- 2. Scalar fields. 2.1. [phi [superscript 4]] model on the lattice. 2.2. Perturbation theory. 2.3. Hopping parameter expansions. 2.4. Luscher-Weisz solution and triviality of the continuum limit. 2.5. Finite-volume effects. 2.6. N-component model -- 3. Gauge fields. 3.1. Continuum gauge fields. 3.2. Lattice gauge fields and Wilson's action. 3.3. Perturbation theory. 3.4. Strong-coupling expansion. 3.5. Static quark potential. 3.6. Glueball spectrum. 3.7. Phase structure of lattice gauge theory -- 4. Fermion fields. 4.1. Fermionic variables. 4.2. Wilson fermions. 4.3. Kogut-Susskind staggered fermions. 4.4. Nielsen-Ninomiya theorem and mirror fermions. 4.5. QED on the lattice</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. Quantum chromodynamics. 5.1. Lattice action and continuum limit. 5.2. Hadron spectrum. 5.3. Broken chiral symmetry on the lattice. 5.4. Hadron thermodynamics -- 6. Higgs and Yukawa models. 6.1. Lattice Higgs models. 6.2. Lattice Yukawa models -- 7. Simulation algorithms. 7.1. Numerical simulation and Markov processes. 7.2. Metropolis algorithms. 7.3. Heatbath algorithms. 7.4. Fermions in numerical simulations. 7.5. Fermion algorithms based on differential equations. 7.6. Hybrid Monte Carlo algorithms. 7.7. Cluster algorithms -- 8. Appendix. 8.1. Notation conventions and basic formulas</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents a comprehensive and coherent account of the theory of quantum fields on a lattice, an essential technique for the study of the strong and electroweak nuclear interactions. Quantum field theory describes basic physical phenomena over an extremely wide range of length or energy scales. Quantum fields exist in space and time, which can be approximated by a set of lattice points. This approximation allows the application of powerful analytical and numerical techniques, and has provided a powerful tool for the study of both the strong and the electroweak interaction. After introductory chapters on scalar fields, gauge fields and fermion fields, the book studies quarks and gluons in QCD and fermions and bosons in the electroweak theory. The last chapter is devoted to numerical simulation algorithms which have been used in recent large-scale numerical simulations. The book will be valuable for graduate students and researchers in theoretical physics, elementary particle physics, and field theory, interested in non-perturbative approximations and numerical simulations of quantum field phenomena</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lattice field theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electroweak interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gauge fields (Physics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gitterfeldtheorie</subfield><subfield code="0">(DE-588)4296098-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gitterfeldtheorie</subfield><subfield code="0">(DE-588)4296098-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Münster, Gernot</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-40432-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-59917-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511470783</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350988</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511470783</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511470783</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942018 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511470783 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350988 |
oclc_num | 849895322 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 491 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on mathematical physics |
spelling | Montvay, I. Verfasser aut Quantum fields on a lattice István Montvay, Gernot Münster Cambridge Cambridge University Press 1994 1 online resource (xii, 491 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on mathematical physics Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1. Introduction. 1.1. Historical remarks. 1.2. Path integral in quantum mechanics. 1.3. Euclidean quantum field theory. 1.4. Euclidean functional integrals. 1.5. Quantum field theory on a lattice. 1.6. Continuum limit and critical behaviour. 1.7. Renormalization group equations. 1.8. Thermodynamics of quantum fields -- 2. Scalar fields. 2.1. [phi [superscript 4]] model on the lattice. 2.2. Perturbation theory. 2.3. Hopping parameter expansions. 2.4. Luscher-Weisz solution and triviality of the continuum limit. 2.5. Finite-volume effects. 2.6. N-component model -- 3. Gauge fields. 3.1. Continuum gauge fields. 3.2. Lattice gauge fields and Wilson's action. 3.3. Perturbation theory. 3.4. Strong-coupling expansion. 3.5. Static quark potential. 3.6. Glueball spectrum. 3.7. Phase structure of lattice gauge theory -- 4. Fermion fields. 4.1. Fermionic variables. 4.2. Wilson fermions. 4.3. Kogut-Susskind staggered fermions. 4.4. Nielsen-Ninomiya theorem and mirror fermions. 4.5. QED on the lattice 5. Quantum chromodynamics. 5.1. Lattice action and continuum limit. 5.2. Hadron spectrum. 5.3. Broken chiral symmetry on the lattice. 5.4. Hadron thermodynamics -- 6. Higgs and Yukawa models. 6.1. Lattice Higgs models. 6.2. Lattice Yukawa models -- 7. Simulation algorithms. 7.1. Numerical simulation and Markov processes. 7.2. Metropolis algorithms. 7.3. Heatbath algorithms. 7.4. Fermions in numerical simulations. 7.5. Fermion algorithms based on differential equations. 7.6. Hybrid Monte Carlo algorithms. 7.7. Cluster algorithms -- 8. Appendix. 8.1. Notation conventions and basic formulas This book presents a comprehensive and coherent account of the theory of quantum fields on a lattice, an essential technique for the study of the strong and electroweak nuclear interactions. Quantum field theory describes basic physical phenomena over an extremely wide range of length or energy scales. Quantum fields exist in space and time, which can be approximated by a set of lattice points. This approximation allows the application of powerful analytical and numerical techniques, and has provided a powerful tool for the study of both the strong and the electroweak interaction. After introductory chapters on scalar fields, gauge fields and fermion fields, the book studies quarks and gluons in QCD and fermions and bosons in the electroweak theory. The last chapter is devoted to numerical simulation algorithms which have been used in recent large-scale numerical simulations. The book will be valuable for graduate students and researchers in theoretical physics, elementary particle physics, and field theory, interested in non-perturbative approximations and numerical simulations of quantum field phenomena Lattice field theory Quantum field theory Electroweak interactions Gauge fields (Physics) Gitterfeldtheorie (DE-588)4296098-8 gnd rswk-swf Gitterfeldtheorie (DE-588)4296098-8 s 1\p DE-604 Münster, Gernot Sonstige oth Erscheint auch als Druckausgabe 978-0-521-40432-7 Erscheint auch als Druckausgabe 978-0-521-59917-7 https://doi.org/10.1017/CBO9780511470783 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Montvay, I. Quantum fields on a lattice 1. Introduction. 1.1. Historical remarks. 1.2. Path integral in quantum mechanics. 1.3. Euclidean quantum field theory. 1.4. Euclidean functional integrals. 1.5. Quantum field theory on a lattice. 1.6. Continuum limit and critical behaviour. 1.7. Renormalization group equations. 1.8. Thermodynamics of quantum fields -- 2. Scalar fields. 2.1. [phi [superscript 4]] model on the lattice. 2.2. Perturbation theory. 2.3. Hopping parameter expansions. 2.4. Luscher-Weisz solution and triviality of the continuum limit. 2.5. Finite-volume effects. 2.6. N-component model -- 3. Gauge fields. 3.1. Continuum gauge fields. 3.2. Lattice gauge fields and Wilson's action. 3.3. Perturbation theory. 3.4. Strong-coupling expansion. 3.5. Static quark potential. 3.6. Glueball spectrum. 3.7. Phase structure of lattice gauge theory -- 4. Fermion fields. 4.1. Fermionic variables. 4.2. Wilson fermions. 4.3. Kogut-Susskind staggered fermions. 4.4. Nielsen-Ninomiya theorem and mirror fermions. 4.5. QED on the lattice 5. Quantum chromodynamics. 5.1. Lattice action and continuum limit. 5.2. Hadron spectrum. 5.3. Broken chiral symmetry on the lattice. 5.4. Hadron thermodynamics -- 6. Higgs and Yukawa models. 6.1. Lattice Higgs models. 6.2. Lattice Yukawa models -- 7. Simulation algorithms. 7.1. Numerical simulation and Markov processes. 7.2. Metropolis algorithms. 7.3. Heatbath algorithms. 7.4. Fermions in numerical simulations. 7.5. Fermion algorithms based on differential equations. 7.6. Hybrid Monte Carlo algorithms. 7.7. Cluster algorithms -- 8. Appendix. 8.1. Notation conventions and basic formulas Lattice field theory Quantum field theory Electroweak interactions Gauge fields (Physics) Gitterfeldtheorie (DE-588)4296098-8 gnd |
subject_GND | (DE-588)4296098-8 |
title | Quantum fields on a lattice |
title_auth | Quantum fields on a lattice |
title_exact_search | Quantum fields on a lattice |
title_full | Quantum fields on a lattice István Montvay, Gernot Münster |
title_fullStr | Quantum fields on a lattice István Montvay, Gernot Münster |
title_full_unstemmed | Quantum fields on a lattice István Montvay, Gernot Münster |
title_short | Quantum fields on a lattice |
title_sort | quantum fields on a lattice |
topic | Lattice field theory Quantum field theory Electroweak interactions Gauge fields (Physics) Gitterfeldtheorie (DE-588)4296098-8 gnd |
topic_facet | Lattice field theory Quantum field theory Electroweak interactions Gauge fields (Physics) Gitterfeldtheorie |
url | https://doi.org/10.1017/CBO9780511470783 |
work_keys_str_mv | AT montvayi quantumfieldsonalattice AT munstergernot quantumfieldsonalattice |