Coherence in three-dimensional category theory:
Dimension three is an important test-bed for hypotheses in higher category theory and occupies something of a unique position in the categorical landscape. At the heart of matters is the coherence theorem, of which this book provides a definitive treatment, as well as covering related results. Along...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2013
|
Schriftenreihe: | Cambridge tracts in mathematics
201 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | Dimension three is an important test-bed for hypotheses in higher category theory and occupies something of a unique position in the categorical landscape. At the heart of matters is the coherence theorem, of which this book provides a definitive treatment, as well as covering related results. Along the way the author treats such material as the Gray tensor product and gives a construction of the fundamental 3-groupoid of a space. The book serves as a comprehensive introduction, covering essential material for any student of coherence and assuming only a basic understanding of higher category theory. It is also a reference point for many key concepts in the field and therefore a vital resource for researchers wishing to apply higher categories or coherence results in fields such as algebraic topology or theoretical computer science |
Beschreibung: | 1 Online-Ressource (vii, 278 Seiten) |
ISBN: | 9781139542333 |
DOI: | 10.1017/CBO9781139542333 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942017 | ||
003 | DE-604 | ||
005 | 20190401 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2013 |||| o||u| ||||||eng d | ||
020 | |a 9781139542333 |c Online |9 978-1-139-54233-3 | ||
024 | 7 | |a 10.1017/CBO9781139542333 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139542333 | ||
035 | |a (OCoLC)847038522 | ||
035 | |a (DE-599)BVBBV043942017 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 512/.55 |2 23 | |
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
100 | 1 | |a Gurski, Nick |d 1980- |e Verfasser |0 (DE-588)1034065572 |4 aut | |
245 | 1 | 0 | |a Coherence in three-dimensional category theory |c Nick Gurski, University of Sheffield |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2013 | |
300 | |a 1 Online-Ressource (vii, 278 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 201 | |
505 | 8 | |a Introduction -- Background: Bicategorical background ; Coherence for bicategories ; Gray-categories -- Tricategories: The algebraic definition of tricategory ; Examples ; Free constructions ; Basic structure ; Gray-categories and tricategories ; Coherence via Yoneda ; Coherence via free constructions -- Gray-monads: Codescent in Gray-categories ; Codescent as a weighted colimit ; Gray-monads and their algebras ; The reflection of lax algebras into strict algebras ; A general coherence result | |
520 | |a Dimension three is an important test-bed for hypotheses in higher category theory and occupies something of a unique position in the categorical landscape. At the heart of matters is the coherence theorem, of which this book provides a definitive treatment, as well as covering related results. Along the way the author treats such material as the Gray tensor product and gives a construction of the fundamental 3-groupoid of a space. The book serves as a comprehensive introduction, covering essential material for any student of coherence and assuming only a basic understanding of higher category theory. It is also a reference point for many key concepts in the field and therefore a vital resource for researchers wishing to apply higher categories or coherence results in fields such as algebraic topology or theoretical computer science | ||
650 | 4 | |a Tricategories | |
650 | 0 | 7 | |a Kategorientheorie |0 (DE-588)4120552-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kategorientheorie |0 (DE-588)4120552-2 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-03489-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139542333 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350987 | ||
966 | e | |u https://doi.org/10.1017/CBO9781139542333 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139542333 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139542333 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884389380096 |
---|---|
any_adam_object | |
author | Gurski, Nick 1980- |
author_GND | (DE-588)1034065572 |
author_facet | Gurski, Nick 1980- |
author_role | aut |
author_sort | Gurski, Nick 1980- |
author_variant | n g ng |
building | Verbundindex |
bvnumber | BV043942017 |
classification_rvk | SK 320 |
collection | ZDB-20-CBO |
contents | Introduction -- Background: Bicategorical background ; Coherence for bicategories ; Gray-categories -- Tricategories: The algebraic definition of tricategory ; Examples ; Free constructions ; Basic structure ; Gray-categories and tricategories ; Coherence via Yoneda ; Coherence via free constructions -- Gray-monads: Codescent in Gray-categories ; Codescent as a weighted colimit ; Gray-monads and their algebras ; The reflection of lax algebras into strict algebras ; A general coherence result |
ctrlnum | (ZDB-20-CBO)CR9781139542333 (OCoLC)847038522 (DE-599)BVBBV043942017 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139542333 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03155nmm a2200457zcb4500</leader><controlfield tag="001">BV043942017</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190401 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139542333</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-54233-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139542333</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139542333</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)847038522</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942017</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gurski, Nick</subfield><subfield code="d">1980-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1034065572</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coherence in three-dimensional category theory</subfield><subfield code="c">Nick Gurski, University of Sheffield</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 278 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">201</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction -- Background: Bicategorical background ; Coherence for bicategories ; Gray-categories -- Tricategories: The algebraic definition of tricategory ; Examples ; Free constructions ; Basic structure ; Gray-categories and tricategories ; Coherence via Yoneda ; Coherence via free constructions -- Gray-monads: Codescent in Gray-categories ; Codescent as a weighted colimit ; Gray-monads and their algebras ; The reflection of lax algebras into strict algebras ; A general coherence result</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dimension three is an important test-bed for hypotheses in higher category theory and occupies something of a unique position in the categorical landscape. At the heart of matters is the coherence theorem, of which this book provides a definitive treatment, as well as covering related results. Along the way the author treats such material as the Gray tensor product and gives a construction of the fundamental 3-groupoid of a space. The book serves as a comprehensive introduction, covering essential material for any student of coherence and assuming only a basic understanding of higher category theory. It is also a reference point for many key concepts in the field and therefore a vital resource for researchers wishing to apply higher categories or coherence results in fields such as algebraic topology or theoretical computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tricategories</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-03489-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139542333</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350987</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139542333</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139542333</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139542333</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942017 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9781139542333 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350987 |
oclc_num | 847038522 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (vii, 278 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Gurski, Nick 1980- Verfasser (DE-588)1034065572 aut Coherence in three-dimensional category theory Nick Gurski, University of Sheffield Cambridge Cambridge University Press 2013 1 Online-Ressource (vii, 278 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 201 Introduction -- Background: Bicategorical background ; Coherence for bicategories ; Gray-categories -- Tricategories: The algebraic definition of tricategory ; Examples ; Free constructions ; Basic structure ; Gray-categories and tricategories ; Coherence via Yoneda ; Coherence via free constructions -- Gray-monads: Codescent in Gray-categories ; Codescent as a weighted colimit ; Gray-monads and their algebras ; The reflection of lax algebras into strict algebras ; A general coherence result Dimension three is an important test-bed for hypotheses in higher category theory and occupies something of a unique position in the categorical landscape. At the heart of matters is the coherence theorem, of which this book provides a definitive treatment, as well as covering related results. Along the way the author treats such material as the Gray tensor product and gives a construction of the fundamental 3-groupoid of a space. The book serves as a comprehensive introduction, covering essential material for any student of coherence and assuming only a basic understanding of higher category theory. It is also a reference point for many key concepts in the field and therefore a vital resource for researchers wishing to apply higher categories or coherence results in fields such as algebraic topology or theoretical computer science Tricategories Kategorientheorie (DE-588)4120552-2 gnd rswk-swf Kategorientheorie (DE-588)4120552-2 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-107-03489-1 https://doi.org/10.1017/CBO9781139542333 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Gurski, Nick 1980- Coherence in three-dimensional category theory Introduction -- Background: Bicategorical background ; Coherence for bicategories ; Gray-categories -- Tricategories: The algebraic definition of tricategory ; Examples ; Free constructions ; Basic structure ; Gray-categories and tricategories ; Coherence via Yoneda ; Coherence via free constructions -- Gray-monads: Codescent in Gray-categories ; Codescent as a weighted colimit ; Gray-monads and their algebras ; The reflection of lax algebras into strict algebras ; A general coherence result Tricategories Kategorientheorie (DE-588)4120552-2 gnd |
subject_GND | (DE-588)4120552-2 |
title | Coherence in three-dimensional category theory |
title_auth | Coherence in three-dimensional category theory |
title_exact_search | Coherence in three-dimensional category theory |
title_full | Coherence in three-dimensional category theory Nick Gurski, University of Sheffield |
title_fullStr | Coherence in three-dimensional category theory Nick Gurski, University of Sheffield |
title_full_unstemmed | Coherence in three-dimensional category theory Nick Gurski, University of Sheffield |
title_short | Coherence in three-dimensional category theory |
title_sort | coherence in three dimensional category theory |
topic | Tricategories Kategorientheorie (DE-588)4120552-2 gnd |
topic_facet | Tricategories Kategorientheorie |
url | https://doi.org/10.1017/CBO9781139542333 |
work_keys_str_mv | AT gurskinick coherenceinthreedimensionalcategorytheory |