The theory of Hardy's Z-function:
Hardy's Z-function, related to the Riemann zeta-function ζ(s), was originally utilised by G. H. Hardy to show that ζ(s) has infinitely many zeros of the form ½+it. It is now amongst the most important functions of analytic number theory, and the Riemann hypothesis, that all complex zeros lie on...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2013
|
Schriftenreihe: | Cambridge tracts in mathematics
196 |
Schlagworte: | |
Online-Zugang: | DE-12 DE-92 DE-355 Volltext |
Zusammenfassung: | Hardy's Z-function, related to the Riemann zeta-function ζ(s), was originally utilised by G. H. Hardy to show that ζ(s) has infinitely many zeros of the form ½+it. It is now amongst the most important functions of analytic number theory, and the Riemann hypothesis, that all complex zeros lie on the line ½+it, is perhaps one of the best known and most important open problems in mathematics. Today Hardy's function has many applications; among others it is used for extensive calculations regarding the zeros of ζ(s). This comprehensive account covers many aspects of Z(t), including the distribution of its zeros, Gram points, moments and Mellin transforms. It features an extensive bibliography and end-of-chapter notes containing comments, remarks and references. The book also provides many open problems to stimulate readers interested in further research |
Beschreibung: | 1 Online-Ressource (xvii, 245 Seiten) |
ISBN: | 9781139236973 |
DOI: | 10.1017/CBO9781139236973 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942016 | ||
003 | DE-604 | ||
005 | 20190401 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2013 xx o|||| 00||| eng d | ||
020 | |a 9781139236973 |c Online |9 978-1-139-23697-3 | ||
024 | 7 | |a 10.1017/CBO9781139236973 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139236973 | ||
035 | |a (OCoLC)852516790 | ||
035 | |a (DE-599)BVBBV043942016 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
100 | 1 | |a Ivić, Aleksandar |d 1949-2020 |e Verfasser |0 (DE-588)1037259343 |4 aut | |
245 | 1 | 0 | |a The theory of Hardy's Z-function |c Aleksandar Ivić, Univerzitet u Beogradu, Serbia |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2013 | |
300 | |a 1 Online-Ressource (xvii, 245 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 196 | |
505 | 8 | |a Definition of (s), Z(t) and basic notions -- Zeros on the critical line -- Selberg class of L-functions -- Approximate functional equations for k(s) -- Derivatives of Z(t) -- Gram points -- Moments of Hardy's function -- Primitive of Hardy's function -- Mellin transforms of powers of Z(t) -- Further results on Mk(s) and Zk(s) -- On some problems involving Hardy's function | |
520 | |a Hardy's Z-function, related to the Riemann zeta-function ζ(s), was originally utilised by G. H. Hardy to show that ζ(s) has infinitely many zeros of the form ½+it. It is now amongst the most important functions of analytic number theory, and the Riemann hypothesis, that all complex zeros lie on the line ½+it, is perhaps one of the best known and most important open problems in mathematics. Today Hardy's function has many applications; among others it is used for extensive calculations regarding the zeros of ζ(s). This comprehensive account covers many aspects of Z(t), including the distribution of its zeros, Gram points, moments and Mellin transforms. It features an extensive bibliography and end-of-chapter notes containing comments, remarks and references. The book also provides many open problems to stimulate readers interested in further research | ||
650 | 4 | |a Number theory | |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zetafunktion |0 (DE-588)4190764-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hardy-Klasse |0 (DE-588)4159107-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hardy-Klasse |0 (DE-588)4159107-0 |D s |
689 | 0 | 1 | |a Zetafunktion |0 (DE-588)4190764-4 |D s |
689 | 0 | 2 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-02883-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139236973 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029350986 | |
966 | e | |u https://doi.org/10.1017/CBO9781139236973 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139236973 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139236973 |l DE-355 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1825578095785017344 |
---|---|
adam_text | |
any_adam_object | |
author | Ivić, Aleksandar 1949-2020 |
author_GND | (DE-588)1037259343 |
author_facet | Ivić, Aleksandar 1949-2020 |
author_role | aut |
author_sort | Ivić, Aleksandar 1949-2020 |
author_variant | a i ai |
building | Verbundindex |
bvnumber | BV043942016 |
classification_rvk | SK 180 |
collection | ZDB-20-CBO |
contents | Definition of (s), Z(t) and basic notions -- Zeros on the critical line -- Selberg class of L-functions -- Approximate functional equations for k(s) -- Derivatives of Z(t) -- Gram points -- Moments of Hardy's function -- Primitive of Hardy's function -- Mellin transforms of powers of Z(t) -- Further results on Mk(s) and Zk(s) -- On some problems involving Hardy's function |
ctrlnum | (ZDB-20-CBO)CR9781139236973 (OCoLC)852516790 (DE-599)BVBBV043942016 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139236973 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV043942016</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190401</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2013 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139236973</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-23697-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139236973</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139236973</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852516790</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942016</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ivić, Aleksandar</subfield><subfield code="d">1949-2020</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1037259343</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The theory of Hardy's Z-function</subfield><subfield code="c">Aleksandar Ivić, Univerzitet u Beogradu, Serbia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 245 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">196</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Definition of (s), Z(t) and basic notions -- Zeros on the critical line -- Selberg class of L-functions -- Approximate functional equations for k(s) -- Derivatives of Z(t) -- Gram points -- Moments of Hardy's function -- Primitive of Hardy's function -- Mellin transforms of powers of Z(t) -- Further results on Mk(s) and Zk(s) -- On some problems involving Hardy's function</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hardy's Z-function, related to the Riemann zeta-function ζ(s), was originally utilised by G. H. Hardy to show that ζ(s) has infinitely many zeros of the form ½+it. It is now amongst the most important functions of analytic number theory, and the Riemann hypothesis, that all complex zeros lie on the line ½+it, is perhaps one of the best known and most important open problems in mathematics. Today Hardy's function has many applications; among others it is used for extensive calculations regarding the zeros of ζ(s). This comprehensive account covers many aspects of Z(t), including the distribution of its zeros, Gram points, moments and Mellin transforms. It features an extensive bibliography and end-of-chapter notes containing comments, remarks and references. The book also provides many open problems to stimulate readers interested in further research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zetafunktion</subfield><subfield code="0">(DE-588)4190764-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hardy-Klasse</subfield><subfield code="0">(DE-588)4159107-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hardy-Klasse</subfield><subfield code="0">(DE-588)4159107-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zetafunktion</subfield><subfield code="0">(DE-588)4190764-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-02883-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139236973</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350986</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139236973</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139236973</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139236973</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942016 |
illustrated | Not Illustrated |
indexdate | 2025-03-03T13:02:22Z |
institution | BVB |
isbn | 9781139236973 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350986 |
oclc_num | 852516790 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xvii, 245 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Ivić, Aleksandar 1949-2020 Verfasser (DE-588)1037259343 aut The theory of Hardy's Z-function Aleksandar Ivić, Univerzitet u Beogradu, Serbia Cambridge Cambridge University Press 2013 1 Online-Ressource (xvii, 245 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 196 Definition of (s), Z(t) and basic notions -- Zeros on the critical line -- Selberg class of L-functions -- Approximate functional equations for k(s) -- Derivatives of Z(t) -- Gram points -- Moments of Hardy's function -- Primitive of Hardy's function -- Mellin transforms of powers of Z(t) -- Further results on Mk(s) and Zk(s) -- On some problems involving Hardy's function Hardy's Z-function, related to the Riemann zeta-function ζ(s), was originally utilised by G. H. Hardy to show that ζ(s) has infinitely many zeros of the form ½+it. It is now amongst the most important functions of analytic number theory, and the Riemann hypothesis, that all complex zeros lie on the line ½+it, is perhaps one of the best known and most important open problems in mathematics. Today Hardy's function has many applications; among others it is used for extensive calculations regarding the zeros of ζ(s). This comprehensive account covers many aspects of Z(t), including the distribution of its zeros, Gram points, moments and Mellin transforms. It features an extensive bibliography and end-of-chapter notes containing comments, remarks and references. The book also provides many open problems to stimulate readers interested in further research Number theory Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Zetafunktion (DE-588)4190764-4 gnd rswk-swf Hardy-Klasse (DE-588)4159107-0 gnd rswk-swf Hardy-Klasse (DE-588)4159107-0 s Zetafunktion (DE-588)4190764-4 s Zahlentheorie (DE-588)4067277-3 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-107-02883-8 https://doi.org/10.1017/CBO9781139236973 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Ivić, Aleksandar 1949-2020 The theory of Hardy's Z-function Definition of (s), Z(t) and basic notions -- Zeros on the critical line -- Selberg class of L-functions -- Approximate functional equations for k(s) -- Derivatives of Z(t) -- Gram points -- Moments of Hardy's function -- Primitive of Hardy's function -- Mellin transforms of powers of Z(t) -- Further results on Mk(s) and Zk(s) -- On some problems involving Hardy's function Number theory Zahlentheorie (DE-588)4067277-3 gnd Zetafunktion (DE-588)4190764-4 gnd Hardy-Klasse (DE-588)4159107-0 gnd |
subject_GND | (DE-588)4067277-3 (DE-588)4190764-4 (DE-588)4159107-0 |
title | The theory of Hardy's Z-function |
title_auth | The theory of Hardy's Z-function |
title_exact_search | The theory of Hardy's Z-function |
title_full | The theory of Hardy's Z-function Aleksandar Ivić, Univerzitet u Beogradu, Serbia |
title_fullStr | The theory of Hardy's Z-function Aleksandar Ivić, Univerzitet u Beogradu, Serbia |
title_full_unstemmed | The theory of Hardy's Z-function Aleksandar Ivić, Univerzitet u Beogradu, Serbia |
title_short | The theory of Hardy's Z-function |
title_sort | the theory of hardy s z function |
topic | Number theory Zahlentheorie (DE-588)4067277-3 gnd Zetafunktion (DE-588)4190764-4 gnd Hardy-Klasse (DE-588)4159107-0 gnd |
topic_facet | Number theory Zahlentheorie Zetafunktion Hardy-Klasse |
url | https://doi.org/10.1017/CBO9781139236973 |
work_keys_str_mv | AT ivicaleksandar thetheoryofhardyszfunction |