Combinatorial matrix theory:
This book, first published in 1991, is devoted to the exposition of combinatorial matrix theory. This subject concerns itself with the use of matrix theory and linear algebra in proving results in combinatorics (and vice versa), and with the intrinsic properties of matrices viewed as arrays of numbe...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1991
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 39 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book, first published in 1991, is devoted to the exposition of combinatorial matrix theory. This subject concerns itself with the use of matrix theory and linear algebra in proving results in combinatorics (and vice versa), and with the intrinsic properties of matrices viewed as arrays of numbers rather than algebraic objects in themselves. There are chapters dealing with the many connections between matrices, graphs, digraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorial properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix, and Latin squares. The final chapter deals with algebraic characterizations of combinatorial properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jordan Canonical Form. The book is sufficiently self-contained for use as a graduate course text, but complete enough for a standard reference work on the basic theory. Thus it will be an essential purchase for combinatorialists, matrix theorists, and those numerical analysts working in numerical linear algebra |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (ix, 367 pages) |
ISBN: | 9781107325708 |
DOI: | 10.1017/CBO9781107325708 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942010 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1991 |||| o||u| ||||||eng d | ||
020 | |a 9781107325708 |c Online |9 978-1-107-32570-8 | ||
024 | 7 | |a 10.1017/CBO9781107325708 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107325708 | ||
035 | |a (OCoLC)855562743 | ||
035 | |a (DE-599)BVBBV043942010 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512.9/434 |2 20 | |
084 | |a SK 170 |0 (DE-625)143221: |2 rvk | ||
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
100 | 1 | |a Brualdi, Richard A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Combinatorial matrix theory |c Richard A. Brualdi, Herbert J. Ryser |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1991 | |
300 | |a 1 online resource (ix, 367 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 39 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Incidence matrices -- Matrices and graphs -- Matrices and digraphs -- Matrices and bigraphs -- Combinatorial matrix algebra -- Existence theorems for combinatorially constrained matrices -- Some special graphs -- The permanent -- Latin squares | |
520 | |a This book, first published in 1991, is devoted to the exposition of combinatorial matrix theory. This subject concerns itself with the use of matrix theory and linear algebra in proving results in combinatorics (and vice versa), and with the intrinsic properties of matrices viewed as arrays of numbers rather than algebraic objects in themselves. There are chapters dealing with the many connections between matrices, graphs, digraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorial properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix, and Latin squares. The final chapter deals with algebraic characterizations of combinatorial properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jordan Canonical Form. The book is sufficiently self-contained for use as a graduate course text, but complete enough for a standard reference work on the basic theory. Thus it will be an essential purchase for combinatorialists, matrix theorists, and those numerical analysts working in numerical linear algebra | ||
650 | 4 | |a Matrices | |
650 | 4 | |a Combinatorial analysis | |
650 | 0 | 7 | |a Kombinatorische Graphentheorie |0 (DE-588)4164748-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kombinatorik |0 (DE-588)4031824-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kombinatorische Analysis |0 (DE-588)4164746-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graph |0 (DE-588)4021842-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrizentheorie |0 (DE-588)4128970-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4014986-9 |a Enzyklopädie |2 gnd-content | |
689 | 0 | 0 | |a Matrizentheorie |0 (DE-588)4128970-5 |D s |
689 | 0 | 1 | |a Kombinatorik |0 (DE-588)4031824-2 |D s |
689 | 0 | 2 | |a Graph |0 (DE-588)4021842-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |D s |
689 | 1 | 1 | |a Kombinatorische Analysis |0 (DE-588)4164746-4 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Matrizentheorie |0 (DE-588)4128970-5 |D s |
689 | 2 | 1 | |a Kombinatorische Graphentheorie |0 (DE-588)4164748-8 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
689 | 3 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 3 | |8 5\p |5 DE-604 | |
700 | 1 | |a Ryser, Herbert John |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-32265-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-66260-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781107325708 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350980 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781107325708 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107325708 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884406157312 |
---|---|
any_adam_object | |
author | Brualdi, Richard A. |
author_facet | Brualdi, Richard A. |
author_role | aut |
author_sort | Brualdi, Richard A. |
author_variant | r a b ra rab |
building | Verbundindex |
bvnumber | BV043942010 |
classification_rvk | SK 170 SK 220 SK 890 |
collection | ZDB-20-CBO |
contents | Incidence matrices -- Matrices and graphs -- Matrices and digraphs -- Matrices and bigraphs -- Combinatorial matrix algebra -- Existence theorems for combinatorially constrained matrices -- Some special graphs -- The permanent -- Latin squares |
ctrlnum | (ZDB-20-CBO)CR9781107325708 (OCoLC)855562743 (DE-599)BVBBV043942010 |
dewey-full | 512.9/434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9/434 |
dewey-search | 512.9/434 |
dewey-sort | 3512.9 3434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781107325708 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04822nmm a2200781zcb4500</leader><controlfield tag="001">BV043942010</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107325708</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-107-32570-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781107325708</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107325708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)855562743</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942010</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.9/434</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brualdi, Richard A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combinatorial matrix theory</subfield><subfield code="c">Richard A. Brualdi, Herbert J. Ryser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 367 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 39</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Incidence matrices -- Matrices and graphs -- Matrices and digraphs -- Matrices and bigraphs -- Combinatorial matrix algebra -- Existence theorems for combinatorially constrained matrices -- Some special graphs -- The permanent -- Latin squares</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book, first published in 1991, is devoted to the exposition of combinatorial matrix theory. This subject concerns itself with the use of matrix theory and linear algebra in proving results in combinatorics (and vice versa), and with the intrinsic properties of matrices viewed as arrays of numbers rather than algebraic objects in themselves. There are chapters dealing with the many connections between matrices, graphs, digraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorial properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix, and Latin squares. The final chapter deals with algebraic characterizations of combinatorial properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jordan Canonical Form. The book is sufficiently self-contained for use as a graduate course text, but complete enough for a standard reference work on the basic theory. Thus it will be an essential purchase for combinatorialists, matrix theorists, and those numerical analysts working in numerical linear algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Graphentheorie</subfield><subfield code="0">(DE-588)4164748-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Analysis</subfield><subfield code="0">(DE-588)4164746-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graph</subfield><subfield code="0">(DE-588)4021842-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizentheorie</subfield><subfield code="0">(DE-588)4128970-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4014986-9</subfield><subfield code="a">Enzyklopädie</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Matrizentheorie</subfield><subfield code="0">(DE-588)4128970-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Graph</subfield><subfield code="0">(DE-588)4021842-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kombinatorische Analysis</subfield><subfield code="0">(DE-588)4164746-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Matrizentheorie</subfield><subfield code="0">(DE-588)4128970-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Kombinatorische Graphentheorie</subfield><subfield code="0">(DE-588)4164748-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ryser, Herbert John</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-32265-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-66260-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781107325708</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350980</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107325708</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107325708</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4014986-9 Enzyklopädie gnd-content |
genre_facet | Enzyklopädie |
id | DE-604.BV043942010 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9781107325708 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350980 |
oclc_num | 855562743 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (ix, 367 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Brualdi, Richard A. Verfasser aut Combinatorial matrix theory Richard A. Brualdi, Herbert J. Ryser Cambridge Cambridge University Press 1991 1 online resource (ix, 367 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 39 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Incidence matrices -- Matrices and graphs -- Matrices and digraphs -- Matrices and bigraphs -- Combinatorial matrix algebra -- Existence theorems for combinatorially constrained matrices -- Some special graphs -- The permanent -- Latin squares This book, first published in 1991, is devoted to the exposition of combinatorial matrix theory. This subject concerns itself with the use of matrix theory and linear algebra in proving results in combinatorics (and vice versa), and with the intrinsic properties of matrices viewed as arrays of numbers rather than algebraic objects in themselves. There are chapters dealing with the many connections between matrices, graphs, digraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorial properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix, and Latin squares. The final chapter deals with algebraic characterizations of combinatorial properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jordan Canonical Form. The book is sufficiently self-contained for use as a graduate course text, but complete enough for a standard reference work on the basic theory. Thus it will be an essential purchase for combinatorialists, matrix theorists, and those numerical analysts working in numerical linear algebra Matrices Combinatorial analysis Kombinatorische Graphentheorie (DE-588)4164748-8 gnd rswk-swf Kombinatorik (DE-588)4031824-2 gnd rswk-swf Kombinatorische Analysis (DE-588)4164746-4 gnd rswk-swf Graph (DE-588)4021842-9 gnd rswk-swf Matrix Mathematik (DE-588)4037968-1 gnd rswk-swf Matrizentheorie (DE-588)4128970-5 gnd rswk-swf Algebra (DE-588)4001156-2 gnd rswk-swf 1\p (DE-588)4014986-9 Enzyklopädie gnd-content Matrizentheorie (DE-588)4128970-5 s Kombinatorik (DE-588)4031824-2 s Graph (DE-588)4021842-9 s 2\p DE-604 Matrix Mathematik (DE-588)4037968-1 s Kombinatorische Analysis (DE-588)4164746-4 s 3\p DE-604 Kombinatorische Graphentheorie (DE-588)4164748-8 s 4\p DE-604 Algebra (DE-588)4001156-2 s 5\p DE-604 Ryser, Herbert John Sonstige oth Erscheint auch als Druckausgabe 978-0-521-32265-2 Erscheint auch als Druckausgabe 978-1-107-66260-5 https://doi.org/10.1017/CBO9781107325708 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Brualdi, Richard A. Combinatorial matrix theory Incidence matrices -- Matrices and graphs -- Matrices and digraphs -- Matrices and bigraphs -- Combinatorial matrix algebra -- Existence theorems for combinatorially constrained matrices -- Some special graphs -- The permanent -- Latin squares Matrices Combinatorial analysis Kombinatorische Graphentheorie (DE-588)4164748-8 gnd Kombinatorik (DE-588)4031824-2 gnd Kombinatorische Analysis (DE-588)4164746-4 gnd Graph (DE-588)4021842-9 gnd Matrix Mathematik (DE-588)4037968-1 gnd Matrizentheorie (DE-588)4128970-5 gnd Algebra (DE-588)4001156-2 gnd |
subject_GND | (DE-588)4164748-8 (DE-588)4031824-2 (DE-588)4164746-4 (DE-588)4021842-9 (DE-588)4037968-1 (DE-588)4128970-5 (DE-588)4001156-2 (DE-588)4014986-9 |
title | Combinatorial matrix theory |
title_auth | Combinatorial matrix theory |
title_exact_search | Combinatorial matrix theory |
title_full | Combinatorial matrix theory Richard A. Brualdi, Herbert J. Ryser |
title_fullStr | Combinatorial matrix theory Richard A. Brualdi, Herbert J. Ryser |
title_full_unstemmed | Combinatorial matrix theory Richard A. Brualdi, Herbert J. Ryser |
title_short | Combinatorial matrix theory |
title_sort | combinatorial matrix theory |
topic | Matrices Combinatorial analysis Kombinatorische Graphentheorie (DE-588)4164748-8 gnd Kombinatorik (DE-588)4031824-2 gnd Kombinatorische Analysis (DE-588)4164746-4 gnd Graph (DE-588)4021842-9 gnd Matrix Mathematik (DE-588)4037968-1 gnd Matrizentheorie (DE-588)4128970-5 gnd Algebra (DE-588)4001156-2 gnd |
topic_facet | Matrices Combinatorial analysis Kombinatorische Graphentheorie Kombinatorik Kombinatorische Analysis Graph Matrix Mathematik Matrizentheorie Algebra Enzyklopädie |
url | https://doi.org/10.1017/CBO9781107325708 |
work_keys_str_mv | AT brualdiricharda combinatorialmatrixtheory AT ryserherbertjohn combinatorialmatrixtheory |