Modern approaches to the invariant-subspace problem:
One of the major unsolved problems in operator theory is the fifty-year-old invariant subspace problem, which asks whether every bounded linear operator on a Hilbert space has a nontrivial closed invariant subspace. This book presents some of the major results in the area, including many that were d...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2011
|
Schriftenreihe: | Cambridge tracts in mathematics
188 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | One of the major unsolved problems in operator theory is the fifty-year-old invariant subspace problem, which asks whether every bounded linear operator on a Hilbert space has a nontrivial closed invariant subspace. This book presents some of the major results in the area, including many that were derived within the past few years and cannot be found in other books. Beginning with a preliminary chapter containing the necessary pure mathematical background, the authors present a variety of powerful techniques, including the use of the operator-valued Poisson kernel, various forms of the functional calculus, Hardy spaces, fixed point theorems, minimal vectors, universal operators and moment sequences. The subject is presented at a level accessible to postgraduate students, as well as established researchers. It will be of particular interest to those who study linear operators and also to those who work in other areas of pure mathematics |
Beschreibung: | 1 Online-Ressource (xi, 285 Seiten) |
ISBN: | 9780511862434 |
DOI: | 10.1017/CBO9780511862434 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942007 | ||
003 | DE-604 | ||
005 | 20190313 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2011 |||| o||u| ||||||eng d | ||
020 | |a 9780511862434 |c Online |9 978-0-511-86243-4 | ||
024 | 7 | |a 10.1017/CBO9780511862434 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511862434 | ||
035 | |a (OCoLC)852503449 | ||
035 | |a (DE-599)BVBBV043942007 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 515/.724 |2 23 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Chalendar, Isabelle |d 1970- |e Verfasser |0 (DE-588)1023865165 |4 aut | |
245 | 1 | 0 | |a Modern approaches to the invariant-subspace problem |c Isabelle Chalendar, Jonathan R. Partington |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2011 | |
300 | |a 1 Online-Ressource (xi, 285 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 188 | |
505 | 8 | |a The operator-valued Poisson kernel and its applications -- Properties (An, m) and factorization of integrable functions -- Polynomially bounded operators with rich spectrum -- Beurling algebras -- Applications of a fixed-point theorem -- Minimal vectors -- Universal operators -- Moment sequences and binomial sums -- Positive and strictly-singular operators | |
520 | |a One of the major unsolved problems in operator theory is the fifty-year-old invariant subspace problem, which asks whether every bounded linear operator on a Hilbert space has a nontrivial closed invariant subspace. This book presents some of the major results in the area, including many that were derived within the past few years and cannot be found in other books. Beginning with a preliminary chapter containing the necessary pure mathematical background, the authors present a variety of powerful techniques, including the use of the operator-valued Poisson kernel, various forms of the functional calculus, Hardy spaces, fixed point theorems, minimal vectors, universal operators and moment sequences. The subject is presented at a level accessible to postgraduate students, as well as established researchers. It will be of particular interest to those who study linear operators and also to those who work in other areas of pure mathematics | ||
650 | 4 | |a Invariant subspaces | |
650 | 4 | |a Hilbert space | |
700 | 1 | |a Partington, Jonathan R. |d 1955- |e Sonstige |0 (DE-588)143775251 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-01051-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511862434 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350977 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511862434 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511862434 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511862434 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884384137216 |
---|---|
any_adam_object | |
author | Chalendar, Isabelle 1970- |
author_GND | (DE-588)1023865165 (DE-588)143775251 |
author_facet | Chalendar, Isabelle 1970- |
author_role | aut |
author_sort | Chalendar, Isabelle 1970- |
author_variant | i c ic |
building | Verbundindex |
bvnumber | BV043942007 |
classification_rvk | SK 620 |
collection | ZDB-20-CBO |
contents | The operator-valued Poisson kernel and its applications -- Properties (An, m) and factorization of integrable functions -- Polynomially bounded operators with rich spectrum -- Beurling algebras -- Applications of a fixed-point theorem -- Minimal vectors -- Universal operators -- Moment sequences and binomial sums -- Positive and strictly-singular operators |
ctrlnum | (ZDB-20-CBO)CR9780511862434 (OCoLC)852503449 (DE-599)BVBBV043942007 |
dewey-full | 515/.724 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.724 |
dewey-search | 515/.724 |
dewey-sort | 3515 3724 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511862434 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03111nmm a2200445zcb4500</leader><controlfield tag="001">BV043942007</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190313 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511862434</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-86243-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511862434</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511862434</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852503449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942007</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.724</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chalendar, Isabelle</subfield><subfield code="d">1970-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1023865165</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modern approaches to the invariant-subspace problem</subfield><subfield code="c">Isabelle Chalendar, Jonathan R. Partington</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 285 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">188</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The operator-valued Poisson kernel and its applications -- Properties (An, m) and factorization of integrable functions -- Polynomially bounded operators with rich spectrum -- Beurling algebras -- Applications of a fixed-point theorem -- Minimal vectors -- Universal operators -- Moment sequences and binomial sums -- Positive and strictly-singular operators</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">One of the major unsolved problems in operator theory is the fifty-year-old invariant subspace problem, which asks whether every bounded linear operator on a Hilbert space has a nontrivial closed invariant subspace. This book presents some of the major results in the area, including many that were derived within the past few years and cannot be found in other books. Beginning with a preliminary chapter containing the necessary pure mathematical background, the authors present a variety of powerful techniques, including the use of the operator-valued Poisson kernel, various forms of the functional calculus, Hardy spaces, fixed point theorems, minimal vectors, universal operators and moment sequences. The subject is presented at a level accessible to postgraduate students, as well as established researchers. It will be of particular interest to those who study linear operators and also to those who work in other areas of pure mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariant subspaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert space</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Partington, Jonathan R.</subfield><subfield code="d">1955-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)143775251</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-01051-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511862434</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350977</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511862434</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511862434</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511862434</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942007 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511862434 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350977 |
oclc_num | 852503449 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xi, 285 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Chalendar, Isabelle 1970- Verfasser (DE-588)1023865165 aut Modern approaches to the invariant-subspace problem Isabelle Chalendar, Jonathan R. Partington Cambridge Cambridge University Press 2011 1 Online-Ressource (xi, 285 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 188 The operator-valued Poisson kernel and its applications -- Properties (An, m) and factorization of integrable functions -- Polynomially bounded operators with rich spectrum -- Beurling algebras -- Applications of a fixed-point theorem -- Minimal vectors -- Universal operators -- Moment sequences and binomial sums -- Positive and strictly-singular operators One of the major unsolved problems in operator theory is the fifty-year-old invariant subspace problem, which asks whether every bounded linear operator on a Hilbert space has a nontrivial closed invariant subspace. This book presents some of the major results in the area, including many that were derived within the past few years and cannot be found in other books. Beginning with a preliminary chapter containing the necessary pure mathematical background, the authors present a variety of powerful techniques, including the use of the operator-valued Poisson kernel, various forms of the functional calculus, Hardy spaces, fixed point theorems, minimal vectors, universal operators and moment sequences. The subject is presented at a level accessible to postgraduate students, as well as established researchers. It will be of particular interest to those who study linear operators and also to those who work in other areas of pure mathematics Invariant subspaces Hilbert space Partington, Jonathan R. 1955- Sonstige (DE-588)143775251 oth Erscheint auch als Druck-Ausgabe 978-1-107-01051-2 https://doi.org/10.1017/CBO9780511862434 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Chalendar, Isabelle 1970- Modern approaches to the invariant-subspace problem The operator-valued Poisson kernel and its applications -- Properties (An, m) and factorization of integrable functions -- Polynomially bounded operators with rich spectrum -- Beurling algebras -- Applications of a fixed-point theorem -- Minimal vectors -- Universal operators -- Moment sequences and binomial sums -- Positive and strictly-singular operators Invariant subspaces Hilbert space |
title | Modern approaches to the invariant-subspace problem |
title_auth | Modern approaches to the invariant-subspace problem |
title_exact_search | Modern approaches to the invariant-subspace problem |
title_full | Modern approaches to the invariant-subspace problem Isabelle Chalendar, Jonathan R. Partington |
title_fullStr | Modern approaches to the invariant-subspace problem Isabelle Chalendar, Jonathan R. Partington |
title_full_unstemmed | Modern approaches to the invariant-subspace problem Isabelle Chalendar, Jonathan R. Partington |
title_short | Modern approaches to the invariant-subspace problem |
title_sort | modern approaches to the invariant subspace problem |
topic | Invariant subspaces Hilbert space |
topic_facet | Invariant subspaces Hilbert space |
url | https://doi.org/10.1017/CBO9780511862434 |
work_keys_str_mv | AT chalendarisabelle modernapproachestotheinvariantsubspaceproblem AT partingtonjonathanr modernapproachestotheinvariantsubspaceproblem |