Elliptic structures on 3-manifolds:
This volume will give a systematic exposition of known results for free actions by finite groups on S. The text begins with preliminary material on Seifert manifolds and group classification. This is followed by sections dealing with related topics including free bZe/2 and bZe/3 actions on lens/pris...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1986
|
Schriftenreihe: | London Mathematical Society lecture note series
104 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This volume will give a systematic exposition of known results for free actions by finite groups on S. The text begins with preliminary material on Seifert manifolds and group classification. This is followed by sections dealing with related topics including free bZe/2 and bZe/3 actions on lens/prism manifolds, the reduction theorem and tangential structure |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (122 pages) |
ISBN: | 9780511662591 |
DOI: | 10.1017/CBO9780511662591 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942001 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1986 |||| o||u| ||||||eng d | ||
020 | |a 9780511662591 |c Online |9 978-0-511-66259-1 | ||
024 | 7 | |a 10.1017/CBO9780511662591 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511662591 | ||
035 | |a (OCoLC)967602201 | ||
035 | |a (DE-599)BVBBV043942001 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 514/.223 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
100 | 1 | |a Thomas, C. B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elliptic structures on 3-manifolds |c C.B. Thomas |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1986 | |
300 | |a 1 online resource (122 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 104 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This volume will give a systematic exposition of known results for free actions by finite groups on S. The text begins with preliminary material on Seifert manifolds and group classification. This is followed by sections dealing with related topics including free bZe/2 and bZe/3 actions on lens/prism manifolds, the reduction theorem and tangential structure | ||
650 | 4 | |a Three-manifolds (Topology) | |
650 | 0 | 7 | |a Dimension 3 |0 (DE-588)4321722-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elliptischer Raum |0 (DE-588)4456592-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 1 | |a Dimension 3 |0 (DE-588)4321722-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Elliptischer Raum |0 (DE-588)4456592-6 |D s |
689 | 1 | 1 | |a Dimension 3 |0 (DE-588)4321722-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-31576-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511662591 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350971 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511662591 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511662591 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884358971392 |
---|---|
any_adam_object | |
author | Thomas, C. B. |
author_facet | Thomas, C. B. |
author_role | aut |
author_sort | Thomas, C. B. |
author_variant | c b t cb cbt |
building | Verbundindex |
bvnumber | BV043942001 |
classification_rvk | SI 320 SK 350 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511662591 (OCoLC)967602201 (DE-599)BVBBV043942001 |
dewey-full | 514/.223 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.223 |
dewey-search | 514/.223 |
dewey-sort | 3514 3223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511662591 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02584nmm a2200553zcb4500</leader><controlfield tag="001">BV043942001</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1986 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662591</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66259-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511662591</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511662591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967602201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942001</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.223</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thomas, C. B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elliptic structures on 3-manifolds</subfield><subfield code="c">C.B. Thomas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (122 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">104</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This volume will give a systematic exposition of known results for free actions by finite groups on S. The text begins with preliminary material on Seifert manifolds and group classification. This is followed by sections dealing with related topics including free bZe/2 and bZe/3 actions on lens/prism manifolds, the reduction theorem and tangential structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-manifolds (Topology)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptischer Raum</subfield><subfield code="0">(DE-588)4456592-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Elliptischer Raum</subfield><subfield code="0">(DE-588)4456592-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-31576-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511662591</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350971</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662591</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662591</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942001 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511662591 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350971 |
oclc_num | 967602201 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (122 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Thomas, C. B. Verfasser aut Elliptic structures on 3-manifolds C.B. Thomas Cambridge Cambridge University Press 1986 1 online resource (122 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 104 Title from publisher's bibliographic system (viewed on 05 Oct 2015) This volume will give a systematic exposition of known results for free actions by finite groups on S. The text begins with preliminary material on Seifert manifolds and group classification. This is followed by sections dealing with related topics including free bZe/2 and bZe/3 actions on lens/prism manifolds, the reduction theorem and tangential structure Three-manifolds (Topology) Dimension 3 (DE-588)4321722-9 gnd rswk-swf Elliptischer Raum (DE-588)4456592-6 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 s Dimension 3 (DE-588)4321722-9 s 1\p DE-604 Elliptischer Raum (DE-588)4456592-6 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-31576-0 https://doi.org/10.1017/CBO9780511662591 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Thomas, C. B. Elliptic structures on 3-manifolds Three-manifolds (Topology) Dimension 3 (DE-588)4321722-9 gnd Elliptischer Raum (DE-588)4456592-6 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
subject_GND | (DE-588)4321722-9 (DE-588)4456592-6 (DE-588)4037379-4 |
title | Elliptic structures on 3-manifolds |
title_auth | Elliptic structures on 3-manifolds |
title_exact_search | Elliptic structures on 3-manifolds |
title_full | Elliptic structures on 3-manifolds C.B. Thomas |
title_fullStr | Elliptic structures on 3-manifolds C.B. Thomas |
title_full_unstemmed | Elliptic structures on 3-manifolds C.B. Thomas |
title_short | Elliptic structures on 3-manifolds |
title_sort | elliptic structures on 3 manifolds |
topic | Three-manifolds (Topology) Dimension 3 (DE-588)4321722-9 gnd Elliptischer Raum (DE-588)4456592-6 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
topic_facet | Three-manifolds (Topology) Dimension 3 Elliptischer Raum Mannigfaltigkeit |
url | https://doi.org/10.1017/CBO9780511662591 |
work_keys_str_mv | AT thomascb ellipticstructureson3manifolds |