Skew fields:
The book is written in three parts. Part I consists of preparatory work on algebras, needed in Parts II and III. This material is presented in a classical, though unusual, way. Part II consists of a modern description of the theory of Brauer groups over fields (from as elementary a point of view as...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1983
|
Schriftenreihe: | London Mathematical Society lecture note series
81 |
Schlagworte: | |
Online-Zugang: | DE-12 DE-92 DE-706 Volltext |
Zusammenfassung: | The book is written in three parts. Part I consists of preparatory work on algebras, needed in Parts II and III. This material is presented in a classical, though unusual, way. Part II consists of a modern description of the theory of Brauer groups over fields (from as elementary a point of view as possible). Part III covers some new developments in the theory which, until now, have not been available except in journals. The principal topic discussed in this section is reduced K,-theory. This book will be of interest to graduate students in pure mathematics and to professional mathematicians |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (viii, 182 pages) |
ISBN: | 9780511661907 |
DOI: | 10.1017/CBO9780511661907 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941998 | ||
003 | DE-604 | ||
005 | 20241018 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1983 |||| o||u| ||||||eng d | ||
020 | |a 9780511661907 |c Online |9 978-0-511-66190-7 | ||
024 | 7 | |a 10.1017/CBO9780511661907 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511661907 | ||
035 | |a (OCoLC)967776142 | ||
035 | |a (DE-599)BVBBV043941998 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-706 | ||
082 | 0 | |a 512/.3 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Draxl, P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Skew fields |c P.K. Draxl |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1983 | |
300 | |a 1 online resource (viii, 182 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 81 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a The book is written in three parts. Part I consists of preparatory work on algebras, needed in Parts II and III. This material is presented in a classical, though unusual, way. Part II consists of a modern description of the theory of Brauer groups over fields (from as elementary a point of view as possible). Part III covers some new developments in the theory which, until now, have not been available except in journals. The principal topic discussed in this section is reduced K,-theory. This book will be of interest to graduate students in pure mathematics and to professional mathematicians | ||
650 | 4 | |a Skew fields | |
650 | 4 | |a Brauer groups | |
650 | 4 | |a K-theory | |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quaternion |0 (DE-588)4176653-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schiefkörper |0 (DE-588)4052359-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quaternion |0 (DE-588)4176653-2 |D s |
689 | 0 | 1 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Schiefkörper |0 (DE-588)4052359-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-27274-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511661907 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029350968 | |
966 | e | |u https://doi.org/10.1017/CBO9780511661907 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511661907 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511661907 |l DE-706 |p ZDB-20-CBO |q UBY_PDA_CBO_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1813237938684690433 |
---|---|
adam_text | |
any_adam_object | |
author | Draxl, P. |
author_facet | Draxl, P. |
author_role | aut |
author_sort | Draxl, P. |
author_variant | p d pd |
building | Verbundindex |
bvnumber | BV043941998 |
classification_rvk | SI 320 SK 230 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511661907 (OCoLC)967776142 (DE-599)BVBBV043941998 |
dewey-full | 512/.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.3 |
dewey-search | 512/.3 |
dewey-sort | 3512 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511661907 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV043941998</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241018</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1983 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511661907</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66190-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511661907</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511661907</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967776142</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941998</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.3</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Draxl, P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Skew fields</subfield><subfield code="c">P.K. Draxl</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 182 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">81</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The book is written in three parts. Part I consists of preparatory work on algebras, needed in Parts II and III. This material is presented in a classical, though unusual, way. Part II consists of a modern description of the theory of Brauer groups over fields (from as elementary a point of view as possible). Part III covers some new developments in the theory which, until now, have not been available except in journals. The principal topic discussed in this section is reduced K,-theory. This book will be of interest to graduate students in pure mathematics and to professional mathematicians</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Skew fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brauer groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quaternion</subfield><subfield code="0">(DE-588)4176653-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schiefkörper</subfield><subfield code="0">(DE-588)4052359-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quaternion</subfield><subfield code="0">(DE-588)4176653-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Schiefkörper</subfield><subfield code="0">(DE-588)4052359-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-27274-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511661907</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350968</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511661907</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511661907</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511661907</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBY_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941998 |
illustrated | Not Illustrated |
indexdate | 2024-10-18T08:00:51Z |
institution | BVB |
isbn | 9780511661907 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350968 |
oclc_num | 967776142 |
open_access_boolean | |
owner | DE-12 DE-92 DE-706 |
owner_facet | DE-12 DE-92 DE-706 |
physical | 1 online resource (viii, 182 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBY_PDA_CBO_Kauf |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Draxl, P. Verfasser aut Skew fields P.K. Draxl Cambridge Cambridge University Press 1983 1 online resource (viii, 182 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 81 Title from publisher's bibliographic system (viewed on 05 Oct 2015) The book is written in three parts. Part I consists of preparatory work on algebras, needed in Parts II and III. This material is presented in a classical, though unusual, way. Part II consists of a modern description of the theory of Brauer groups over fields (from as elementary a point of view as possible). Part III covers some new developments in the theory which, until now, have not been available except in journals. The principal topic discussed in this section is reduced K,-theory. This book will be of interest to graduate students in pure mathematics and to professional mathematicians Skew fields Brauer groups K-theory Algebra (DE-588)4001156-2 gnd rswk-swf Quaternion (DE-588)4176653-2 gnd rswk-swf Schiefkörper (DE-588)4052359-7 gnd rswk-swf Quaternion (DE-588)4176653-2 s Algebra (DE-588)4001156-2 s 1\p DE-604 Schiefkörper (DE-588)4052359-7 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-27274-2 https://doi.org/10.1017/CBO9780511661907 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Draxl, P. Skew fields Skew fields Brauer groups K-theory Algebra (DE-588)4001156-2 gnd Quaternion (DE-588)4176653-2 gnd Schiefkörper (DE-588)4052359-7 gnd |
subject_GND | (DE-588)4001156-2 (DE-588)4176653-2 (DE-588)4052359-7 |
title | Skew fields |
title_auth | Skew fields |
title_exact_search | Skew fields |
title_full | Skew fields P.K. Draxl |
title_fullStr | Skew fields P.K. Draxl |
title_full_unstemmed | Skew fields P.K. Draxl |
title_short | Skew fields |
title_sort | skew fields |
topic | Skew fields Brauer groups K-theory Algebra (DE-588)4001156-2 gnd Quaternion (DE-588)4176653-2 gnd Schiefkörper (DE-588)4052359-7 gnd |
topic_facet | Skew fields Brauer groups K-theory Algebra Quaternion Schiefkörper |
url | https://doi.org/10.1017/CBO9780511661907 |
work_keys_str_mv | AT draxlp skewfields |