Compactification of Siegel moduli schemes:
The Siegel moduli scheme classifies principally polarised abelian varieties and its compactification is an important result in arithmetic algebraic geometry. The main result of this monograph is to prove the existence of the toroidal compactification over Z (1/2). This result should have further app...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1985
|
Schriftenreihe: | London Mathematical Society lecture note series
107 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The Siegel moduli scheme classifies principally polarised abelian varieties and its compactification is an important result in arithmetic algebraic geometry. The main result of this monograph is to prove the existence of the toroidal compactification over Z (1/2). This result should have further applications and is presented here with sufficient background material to make the book suitable for seminar courses in algebraic geometry, algebraic number theory or automorphic forms |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvi, 326 pages) |
ISBN: | 9780511721298 |
DOI: | 10.1017/CBO9780511721298 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941997 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1985 |||| o||u| ||||||eng d | ||
020 | |a 9780511721298 |c Online |9 978-0-511-72129-8 | ||
024 | 7 | |a 10.1017/CBO9780511721298 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511721298 | ||
035 | |a (OCoLC)907963583 | ||
035 | |a (DE-599)BVBBV043941997 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515.7 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Chai, Ching-Li |e Verfasser |4 aut | |
245 | 1 | 0 | |a Compactification of Siegel moduli schemes |c Ching-Li Chai |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1985 | |
300 | |a 1 online resource (xvi, 326 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 107 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |g Introduction |g 1 |t Review of the Siegel moduli schemes |g 2 |t Analytic quotient construction of families of degenerating abelian varieties |g 3 |t Test families as co-ordinates at the boundary |g 4 |t Propagation of Tai's theorem to positive characteristics |g 5 |t Application to Siegel modular forms |g Appendixes |
520 | |a The Siegel moduli scheme classifies principally polarised abelian varieties and its compactification is an important result in arithmetic algebraic geometry. The main result of this monograph is to prove the existence of the toroidal compactification over Z (1/2). This result should have further applications and is presented here with sufficient background material to make the book suitable for seminar courses in algebraic geometry, algebraic number theory or automorphic forms | ||
650 | 4 | |a Moduli theory | |
650 | 4 | |a Functions, Theta | |
650 | 4 | |a Forms, Modular | |
650 | 0 | 7 | |a Kompaktifizierung |0 (DE-588)4164859-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Siegel-Raum |0 (DE-588)4181229-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modultheorie |0 (DE-588)4170336-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Thetafunktion |0 (DE-588)4185175-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modulform |0 (DE-588)4128299-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Siegel-Modulfunktion |0 (DE-588)4181232-3 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Siegel-Modulfunktion |0 (DE-588)4181232-3 |D s |
689 | 0 | 1 | |a Kompaktifizierung |0 (DE-588)4164859-6 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Modulform |0 (DE-588)4128299-1 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Thetafunktion |0 (DE-588)4185175-4 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
689 | 3 | 0 | |a Modultheorie |0 (DE-588)4170336-4 |D s |
689 | 3 | |8 5\p |5 DE-604 | |
689 | 4 | 0 | |a Siegel-Raum |0 (DE-588)4181229-3 |D s |
689 | 4 | |8 6\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-31253-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511721298 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350967 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511721298 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511721298 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884371554304 |
---|---|
any_adam_object | |
author | Chai, Ching-Li |
author_facet | Chai, Ching-Li |
author_role | aut |
author_sort | Chai, Ching-Li |
author_variant | c l c clc |
building | Verbundindex |
bvnumber | BV043941997 |
classification_rvk | SI 320 SK 240 |
collection | ZDB-20-CBO |
contents | Review of the Siegel moduli schemes Analytic quotient construction of families of degenerating abelian varieties Test families as co-ordinates at the boundary Propagation of Tai's theorem to positive characteristics Application to Siegel modular forms |
ctrlnum | (ZDB-20-CBO)CR9780511721298 (OCoLC)907963583 (DE-599)BVBBV043941997 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511721298 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03876nmm a2200745zcb4500</leader><controlfield tag="001">BV043941997</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511721298</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-72129-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511721298</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511721298</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)907963583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941997</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chai, Ching-Li</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compactification of Siegel moduli schemes</subfield><subfield code="c">Ching-Li Chai</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 326 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">107</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="g">Introduction</subfield><subfield code="g">1</subfield><subfield code="t">Review of the Siegel moduli schemes</subfield><subfield code="g">2</subfield><subfield code="t">Analytic quotient construction of families of degenerating abelian varieties</subfield><subfield code="g">3</subfield><subfield code="t">Test families as co-ordinates at the boundary</subfield><subfield code="g">4</subfield><subfield code="t">Propagation of Tai's theorem to positive characteristics</subfield><subfield code="g">5</subfield><subfield code="t">Application to Siegel modular forms</subfield><subfield code="g">Appendixes</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Siegel moduli scheme classifies principally polarised abelian varieties and its compactification is an important result in arithmetic algebraic geometry. The main result of this monograph is to prove the existence of the toroidal compactification over Z (1/2). This result should have further applications and is presented here with sufficient background material to make the book suitable for seminar courses in algebraic geometry, algebraic number theory or automorphic forms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moduli theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, Theta</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forms, Modular</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kompaktifizierung</subfield><subfield code="0">(DE-588)4164859-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Siegel-Raum</subfield><subfield code="0">(DE-588)4181229-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modultheorie</subfield><subfield code="0">(DE-588)4170336-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Thetafunktion</subfield><subfield code="0">(DE-588)4185175-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulform</subfield><subfield code="0">(DE-588)4128299-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Siegel-Modulfunktion</subfield><subfield code="0">(DE-588)4181232-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Siegel-Modulfunktion</subfield><subfield code="0">(DE-588)4181232-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kompaktifizierung</subfield><subfield code="0">(DE-588)4164859-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Modulform</subfield><subfield code="0">(DE-588)4128299-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Thetafunktion</subfield><subfield code="0">(DE-588)4185175-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Modultheorie</subfield><subfield code="0">(DE-588)4170336-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Siegel-Raum</subfield><subfield code="0">(DE-588)4181229-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-31253-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511721298</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350967</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721298</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721298</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV043941997 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511721298 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350967 |
oclc_num | 907963583 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvi, 326 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Chai, Ching-Li Verfasser aut Compactification of Siegel moduli schemes Ching-Li Chai Cambridge Cambridge University Press 1985 1 online resource (xvi, 326 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 107 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Introduction 1 Review of the Siegel moduli schemes 2 Analytic quotient construction of families of degenerating abelian varieties 3 Test families as co-ordinates at the boundary 4 Propagation of Tai's theorem to positive characteristics 5 Application to Siegel modular forms Appendixes The Siegel moduli scheme classifies principally polarised abelian varieties and its compactification is an important result in arithmetic algebraic geometry. The main result of this monograph is to prove the existence of the toroidal compactification over Z (1/2). This result should have further applications and is presented here with sufficient background material to make the book suitable for seminar courses in algebraic geometry, algebraic number theory or automorphic forms Moduli theory Functions, Theta Forms, Modular Kompaktifizierung (DE-588)4164859-6 gnd rswk-swf Siegel-Raum (DE-588)4181229-3 gnd rswk-swf Modultheorie (DE-588)4170336-4 gnd rswk-swf Thetafunktion (DE-588)4185175-4 gnd rswk-swf Modulform (DE-588)4128299-1 gnd rswk-swf Siegel-Modulfunktion (DE-588)4181232-3 gnd rswk-swf 1\p (DE-588)4113937-9 Hochschulschrift gnd-content Siegel-Modulfunktion (DE-588)4181232-3 s Kompaktifizierung (DE-588)4164859-6 s 2\p DE-604 Modulform (DE-588)4128299-1 s 3\p DE-604 Thetafunktion (DE-588)4185175-4 s 4\p DE-604 Modultheorie (DE-588)4170336-4 s 5\p DE-604 Siegel-Raum (DE-588)4181229-3 s 6\p DE-604 Erscheint auch als Druckausgabe 978-0-521-31253-0 https://doi.org/10.1017/CBO9780511721298 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Chai, Ching-Li Compactification of Siegel moduli schemes Review of the Siegel moduli schemes Analytic quotient construction of families of degenerating abelian varieties Test families as co-ordinates at the boundary Propagation of Tai's theorem to positive characteristics Application to Siegel modular forms Moduli theory Functions, Theta Forms, Modular Kompaktifizierung (DE-588)4164859-6 gnd Siegel-Raum (DE-588)4181229-3 gnd Modultheorie (DE-588)4170336-4 gnd Thetafunktion (DE-588)4185175-4 gnd Modulform (DE-588)4128299-1 gnd Siegel-Modulfunktion (DE-588)4181232-3 gnd |
subject_GND | (DE-588)4164859-6 (DE-588)4181229-3 (DE-588)4170336-4 (DE-588)4185175-4 (DE-588)4128299-1 (DE-588)4181232-3 (DE-588)4113937-9 |
title | Compactification of Siegel moduli schemes |
title_alt | Review of the Siegel moduli schemes Analytic quotient construction of families of degenerating abelian varieties Test families as co-ordinates at the boundary Propagation of Tai's theorem to positive characteristics Application to Siegel modular forms |
title_auth | Compactification of Siegel moduli schemes |
title_exact_search | Compactification of Siegel moduli schemes |
title_full | Compactification of Siegel moduli schemes Ching-Li Chai |
title_fullStr | Compactification of Siegel moduli schemes Ching-Li Chai |
title_full_unstemmed | Compactification of Siegel moduli schemes Ching-Li Chai |
title_short | Compactification of Siegel moduli schemes |
title_sort | compactification of siegel moduli schemes |
topic | Moduli theory Functions, Theta Forms, Modular Kompaktifizierung (DE-588)4164859-6 gnd Siegel-Raum (DE-588)4181229-3 gnd Modultheorie (DE-588)4170336-4 gnd Thetafunktion (DE-588)4185175-4 gnd Modulform (DE-588)4128299-1 gnd Siegel-Modulfunktion (DE-588)4181232-3 gnd |
topic_facet | Moduli theory Functions, Theta Forms, Modular Kompaktifizierung Siegel-Raum Modultheorie Thetafunktion Modulform Siegel-Modulfunktion Hochschulschrift |
url | https://doi.org/10.1017/CBO9780511721298 |
work_keys_str_mv | AT chaichingli compactificationofsiegelmodulischemes |