Combinatorial matrix classes:
A natural sequel to the author's previous book Combinatorial Matrix Theory written with H. J. Ryser, this is the first book devoted exclusively to existence questions, constructive algorithms, enumeration questions, and other properties concerning classes of matrices of combinatorial significan...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2006
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 108 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | A natural sequel to the author's previous book Combinatorial Matrix Theory written with H. J. Ryser, this is the first book devoted exclusively to existence questions, constructive algorithms, enumeration questions, and other properties concerning classes of matrices of combinatorial significance. Several classes of matrices are thoroughly developed including the classes of matrices of 0's and 1's with a specified number of 1's in each row and column (equivalently, bipartite graphs with a specified degree sequence), symmetric matrices in such classes (equivalently, graphs with a specified degree sequence), tournament matrices with a specified number of 1's in each row (equivalently, tournaments with a specified score sequence), nonnegative matrices with specified row and column sums, and doubly stochastic matrices. Most of this material is presented for the first time in book format and the chapter on doubly stochastic matrices provides the most complete development of the topic to date |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (x, 544 pages) |
ISBN: | 9780511721182 |
DOI: | 10.1017/CBO9780511721182 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941996 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2006 |||| o||u| ||||||eng d | ||
020 | |a 9780511721182 |c Online |9 978-0-511-72118-2 | ||
024 | 7 | |a 10.1017/CBO9780511721182 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511721182 | ||
035 | |a (OCoLC)850445937 | ||
035 | |a (DE-599)BVBBV043941996 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512.9434 |2 22 | |
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
100 | 1 | |a Brualdi, Richard A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Combinatorial matrix classes |c Richard A. Brualdi |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2006 | |
300 | |a 1 online resource (x, 544 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 108 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |g 1 |t Introduction |g 2 |t Basic existence theorems for matrices with prescribed properties |g 3 |t The class A(R, S) of (0,1)-matrices |g 4 |t More on the class A(R, S) of (0,1)-matrices |g 5 |t The class T(R) of tournament matrices |g 6 |t Interchange graphs |g 7 |t Classes of symmetric integral matrices |g 8 |t Convex polytopes of matrices |g 9 |t Doubly stochastic matrices |
520 | |a A natural sequel to the author's previous book Combinatorial Matrix Theory written with H. J. Ryser, this is the first book devoted exclusively to existence questions, constructive algorithms, enumeration questions, and other properties concerning classes of matrices of combinatorial significance. Several classes of matrices are thoroughly developed including the classes of matrices of 0's and 1's with a specified number of 1's in each row and column (equivalently, bipartite graphs with a specified degree sequence), symmetric matrices in such classes (equivalently, graphs with a specified degree sequence), tournament matrices with a specified number of 1's in each row (equivalently, tournaments with a specified score sequence), nonnegative matrices with specified row and column sums, and doubly stochastic matrices. Most of this material is presented for the first time in book format and the chapter on doubly stochastic matrices provides the most complete development of the topic to date | ||
650 | 4 | |a Combinatorial analysis | |
650 | 4 | |a Matrices | |
650 | 0 | 7 | |a Kombinatorische Analysis |0 (DE-588)4164746-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kombinatorik |0 (DE-588)4031824-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrizentheorie |0 (DE-588)4128970-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kombinatorische Analysis |0 (DE-588)4164746-4 |D s |
689 | 0 | 1 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Matrizentheorie |0 (DE-588)4128970-5 |D s |
689 | 1 | 1 | |a Kombinatorik |0 (DE-588)4031824-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-86565-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511721182 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350966 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511721182 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511721182 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884368408576 |
---|---|
any_adam_object | |
author | Brualdi, Richard A. |
author_facet | Brualdi, Richard A. |
author_role | aut |
author_sort | Brualdi, Richard A. |
author_variant | r a b ra rab |
building | Verbundindex |
bvnumber | BV043941996 |
classification_rvk | SK 220 |
collection | ZDB-20-CBO |
contents | Introduction Basic existence theorems for matrices with prescribed properties The class A(R, S) of (0,1)-matrices More on the class A(R, S) of (0,1)-matrices The class T(R) of tournament matrices Interchange graphs Classes of symmetric integral matrices Convex polytopes of matrices Doubly stochastic matrices |
ctrlnum | (ZDB-20-CBO)CR9780511721182 (OCoLC)850445937 (DE-599)BVBBV043941996 |
dewey-full | 512.9434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9434 |
dewey-search | 512.9434 |
dewey-sort | 3512.9434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511721182 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03886nmm a2200625zcb4500</leader><controlfield tag="001">BV043941996</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511721182</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-72118-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511721182</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511721182</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850445937</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941996</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.9434</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brualdi, Richard A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combinatorial matrix classes</subfield><subfield code="c">Richard A. Brualdi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 544 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 108</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="g">1</subfield><subfield code="t">Introduction</subfield><subfield code="g">2</subfield><subfield code="t">Basic existence theorems for matrices with prescribed properties</subfield><subfield code="g">3</subfield><subfield code="t">The class A(R, S) of (0,1)-matrices</subfield><subfield code="g">4</subfield><subfield code="t">More on the class A(R, S) of (0,1)-matrices</subfield><subfield code="g">5</subfield><subfield code="t">The class T(R) of tournament matrices</subfield><subfield code="g">6</subfield><subfield code="t">Interchange graphs</subfield><subfield code="g">7</subfield><subfield code="t">Classes of symmetric integral matrices</subfield><subfield code="g">8</subfield><subfield code="t">Convex polytopes of matrices</subfield><subfield code="g">9</subfield><subfield code="t">Doubly stochastic matrices</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A natural sequel to the author's previous book Combinatorial Matrix Theory written with H. J. Ryser, this is the first book devoted exclusively to existence questions, constructive algorithms, enumeration questions, and other properties concerning classes of matrices of combinatorial significance. Several classes of matrices are thoroughly developed including the classes of matrices of 0's and 1's with a specified number of 1's in each row and column (equivalently, bipartite graphs with a specified degree sequence), symmetric matrices in such classes (equivalently, graphs with a specified degree sequence), tournament matrices with a specified number of 1's in each row (equivalently, tournaments with a specified score sequence), nonnegative matrices with specified row and column sums, and doubly stochastic matrices. Most of this material is presented for the first time in book format and the chapter on doubly stochastic matrices provides the most complete development of the topic to date</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Analysis</subfield><subfield code="0">(DE-588)4164746-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizentheorie</subfield><subfield code="0">(DE-588)4128970-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kombinatorische Analysis</subfield><subfield code="0">(DE-588)4164746-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Matrizentheorie</subfield><subfield code="0">(DE-588)4128970-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-86565-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511721182</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350966</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721182</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721182</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941996 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511721182 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350966 |
oclc_num | 850445937 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (x, 544 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Brualdi, Richard A. Verfasser aut Combinatorial matrix classes Richard A. Brualdi Cambridge Cambridge University Press 2006 1 online resource (x, 544 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 108 Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1 Introduction 2 Basic existence theorems for matrices with prescribed properties 3 The class A(R, S) of (0,1)-matrices 4 More on the class A(R, S) of (0,1)-matrices 5 The class T(R) of tournament matrices 6 Interchange graphs 7 Classes of symmetric integral matrices 8 Convex polytopes of matrices 9 Doubly stochastic matrices A natural sequel to the author's previous book Combinatorial Matrix Theory written with H. J. Ryser, this is the first book devoted exclusively to existence questions, constructive algorithms, enumeration questions, and other properties concerning classes of matrices of combinatorial significance. Several classes of matrices are thoroughly developed including the classes of matrices of 0's and 1's with a specified number of 1's in each row and column (equivalently, bipartite graphs with a specified degree sequence), symmetric matrices in such classes (equivalently, graphs with a specified degree sequence), tournament matrices with a specified number of 1's in each row (equivalently, tournaments with a specified score sequence), nonnegative matrices with specified row and column sums, and doubly stochastic matrices. Most of this material is presented for the first time in book format and the chapter on doubly stochastic matrices provides the most complete development of the topic to date Combinatorial analysis Matrices Kombinatorische Analysis (DE-588)4164746-4 gnd rswk-swf Kombinatorik (DE-588)4031824-2 gnd rswk-swf Algebra (DE-588)4001156-2 gnd rswk-swf Matrizentheorie (DE-588)4128970-5 gnd rswk-swf Matrix Mathematik (DE-588)4037968-1 gnd rswk-swf Kombinatorische Analysis (DE-588)4164746-4 s Matrix Mathematik (DE-588)4037968-1 s 1\p DE-604 Matrizentheorie (DE-588)4128970-5 s Kombinatorik (DE-588)4031824-2 s 2\p DE-604 Algebra (DE-588)4001156-2 s 3\p DE-604 Erscheint auch als Druckausgabe 978-0-521-86565-4 https://doi.org/10.1017/CBO9780511721182 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Brualdi, Richard A. Combinatorial matrix classes Introduction Basic existence theorems for matrices with prescribed properties The class A(R, S) of (0,1)-matrices More on the class A(R, S) of (0,1)-matrices The class T(R) of tournament matrices Interchange graphs Classes of symmetric integral matrices Convex polytopes of matrices Doubly stochastic matrices Combinatorial analysis Matrices Kombinatorische Analysis (DE-588)4164746-4 gnd Kombinatorik (DE-588)4031824-2 gnd Algebra (DE-588)4001156-2 gnd Matrizentheorie (DE-588)4128970-5 gnd Matrix Mathematik (DE-588)4037968-1 gnd |
subject_GND | (DE-588)4164746-4 (DE-588)4031824-2 (DE-588)4001156-2 (DE-588)4128970-5 (DE-588)4037968-1 |
title | Combinatorial matrix classes |
title_alt | Introduction Basic existence theorems for matrices with prescribed properties The class A(R, S) of (0,1)-matrices More on the class A(R, S) of (0,1)-matrices The class T(R) of tournament matrices Interchange graphs Classes of symmetric integral matrices Convex polytopes of matrices Doubly stochastic matrices |
title_auth | Combinatorial matrix classes |
title_exact_search | Combinatorial matrix classes |
title_full | Combinatorial matrix classes Richard A. Brualdi |
title_fullStr | Combinatorial matrix classes Richard A. Brualdi |
title_full_unstemmed | Combinatorial matrix classes Richard A. Brualdi |
title_short | Combinatorial matrix classes |
title_sort | combinatorial matrix classes |
topic | Combinatorial analysis Matrices Kombinatorische Analysis (DE-588)4164746-4 gnd Kombinatorik (DE-588)4031824-2 gnd Algebra (DE-588)4001156-2 gnd Matrizentheorie (DE-588)4128970-5 gnd Matrix Mathematik (DE-588)4037968-1 gnd |
topic_facet | Combinatorial analysis Matrices Kombinatorische Analysis Kombinatorik Algebra Matrizentheorie Matrix Mathematik |
url | https://doi.org/10.1017/CBO9780511721182 |
work_keys_str_mv | AT brualdiricharda combinatorialmatrixclasses |