Algebraic methods in unstable homotopy theory:
The most modern and thorough treatment of unstable homotopy theory available. The focus is on those methods from algebraic topology which are needed in the presentation of results, proven by Cohen, Moore, and the author, on the exponents of homotopy groups. The author introduces various aspects of u...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2010
|
Schriftenreihe: | New mathematical monographs
12 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The most modern and thorough treatment of unstable homotopy theory available. The focus is on those methods from algebraic topology which are needed in the presentation of results, proven by Cohen, Moore, and the author, on the exponents of homotopy groups. The author introduces various aspects of unstable homotopy theory, including: homotopy groups with coefficients; localization and completion; the Hopf invariants of Hilton, James, and Toda; Samelson products; homotopy Bockstein spectral sequences; graded Lie algebras; differential homological algebra; and the exponent theorems concerning the homotopy groups of spheres and Moore spaces. This book is suitable for a course in unstable homotopy theory, following a first course in homotopy theory. It is also a valuable reference for both experts and graduate students wishing to enter the field |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xix, 554 pages) |
ISBN: | 9780511691638 |
DOI: | 10.1017/CBO9780511691638 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941995 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2010 |||| o||u| ||||||eng d | ||
020 | |a 9780511691638 |c Online |9 978-0-511-69163-8 | ||
024 | 7 | |a 10.1017/CBO9780511691638 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511691638 | ||
035 | |a (OCoLC)839034162 | ||
035 | |a (DE-599)BVBBV043941995 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 514/.24 |2 22 | |
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
100 | 1 | |a Neisendorfer, Joseph |d 1945- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Algebraic methods in unstable homotopy theory |c Joseph Neisendorfer |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2010 | |
300 | |a 1 online resource (xix, 554 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a New mathematical monographs |v 12 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |t Homotopy groups with coefficients |t A general theory of localization |t Fibre extensions of squares and the Peterson-Stein formula |t Hilton-Hopf invariants and the EHP sequence |t James-Hopf invariants and Toda-Hopf invariants |t Samelson products |t Bockstein spectral sequences |t Lie algebras and universal enveloping algebras |t Applications of graded Lie algebras |t Differential homological algebra |t Odd primary exponent theorems |t Differential homological algebra of classifying spaces |t Machine generated contents note: Preface; Introduction; 1. Homotopy groups with coefficients; 2. A general theory of localization; 3. Fibre extensions of squares and the Peterson-Stein formula; 4. Hilton-Hopf invariants and the EHP sequence; 5. James-Hopf invariants and Toda-Hopf invariants; 6. Samelson products; 7. Bockstein spectral sequences; 8. Lie algebras and universal enveloping algebras; 9. Applications of graded Lie algebras; 10. Differential homological algebra; 11. Odd primary exponent theorems; 12. Differential homological algebra of classifying spaces; Bibliography; Index |
520 | |a The most modern and thorough treatment of unstable homotopy theory available. The focus is on those methods from algebraic topology which are needed in the presentation of results, proven by Cohen, Moore, and the author, on the exponents of homotopy groups. The author introduces various aspects of unstable homotopy theory, including: homotopy groups with coefficients; localization and completion; the Hopf invariants of Hilton, James, and Toda; Samelson products; homotopy Bockstein spectral sequences; graded Lie algebras; differential homological algebra; and the exponent theorems concerning the homotopy groups of spheres and Moore spaces. This book is suitable for a course in unstable homotopy theory, following a first course in homotopy theory. It is also a valuable reference for both experts and graduate students wishing to enter the field | ||
650 | 4 | |a Homotopy theory | |
650 | 4 | |a Algebraic topology | |
650 | 0 | 7 | |a Algebraische Methode |0 (DE-588)4141841-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homotopietheorie |0 (DE-588)4128142-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Homotopietheorie |0 (DE-588)4128142-1 |D s |
689 | 0 | 1 | |a Algebraische Methode |0 (DE-588)4141841-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-76037-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511691638 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350965 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511691638 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511691638 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884343242752 |
---|---|
any_adam_object | |
author | Neisendorfer, Joseph 1945- |
author_facet | Neisendorfer, Joseph 1945- |
author_role | aut |
author_sort | Neisendorfer, Joseph 1945- |
author_variant | j n jn |
building | Verbundindex |
bvnumber | BV043941995 |
classification_rvk | SK 300 SK 320 |
collection | ZDB-20-CBO |
contents | Homotopy groups with coefficients A general theory of localization Fibre extensions of squares and the Peterson-Stein formula Hilton-Hopf invariants and the EHP sequence James-Hopf invariants and Toda-Hopf invariants Samelson products Bockstein spectral sequences Lie algebras and universal enveloping algebras Applications of graded Lie algebras Differential homological algebra Odd primary exponent theorems Differential homological algebra of classifying spaces Machine generated contents note: Preface; Introduction; 1. Homotopy groups with coefficients; 2. A general theory of localization; 3. Fibre extensions of squares and the Peterson-Stein formula; 4. Hilton-Hopf invariants and the EHP sequence; 5. James-Hopf invariants and Toda-Hopf invariants; 6. Samelson products; 7. Bockstein spectral sequences; 8. Lie algebras and universal enveloping algebras; 9. Applications of graded Lie algebras; 10. Differential homological algebra; 11. Odd primary exponent theorems; 12. Differential homological algebra of classifying spaces; Bibliography; Index |
ctrlnum | (ZDB-20-CBO)CR9780511691638 (OCoLC)839034162 (DE-599)BVBBV043941995 |
dewey-full | 514/.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.24 |
dewey-search | 514/.24 |
dewey-sort | 3514 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511691638 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03930nmm a2200517zcb4500</leader><controlfield tag="001">BV043941995</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511691638</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-69163-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511691638</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511691638</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839034162</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941995</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.24</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Neisendorfer, Joseph</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic methods in unstable homotopy theory</subfield><subfield code="c">Joseph Neisendorfer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xix, 554 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">New mathematical monographs</subfield><subfield code="v">12</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Homotopy groups with coefficients</subfield><subfield code="t">A general theory of localization</subfield><subfield code="t">Fibre extensions of squares and the Peterson-Stein formula</subfield><subfield code="t">Hilton-Hopf invariants and the EHP sequence</subfield><subfield code="t">James-Hopf invariants and Toda-Hopf invariants</subfield><subfield code="t">Samelson products</subfield><subfield code="t">Bockstein spectral sequences</subfield><subfield code="t">Lie algebras and universal enveloping algebras</subfield><subfield code="t">Applications of graded Lie algebras</subfield><subfield code="t">Differential homological algebra</subfield><subfield code="t">Odd primary exponent theorems</subfield><subfield code="t">Differential homological algebra of classifying spaces</subfield><subfield code="t">Machine generated contents note: Preface; Introduction; 1. Homotopy groups with coefficients; 2. A general theory of localization; 3. Fibre extensions of squares and the Peterson-Stein formula; 4. Hilton-Hopf invariants and the EHP sequence; 5. James-Hopf invariants and Toda-Hopf invariants; 6. Samelson products; 7. Bockstein spectral sequences; 8. Lie algebras and universal enveloping algebras; 9. Applications of graded Lie algebras; 10. Differential homological algebra; 11. Odd primary exponent theorems; 12. Differential homological algebra of classifying spaces; Bibliography; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The most modern and thorough treatment of unstable homotopy theory available. The focus is on those methods from algebraic topology which are needed in the presentation of results, proven by Cohen, Moore, and the author, on the exponents of homotopy groups. The author introduces various aspects of unstable homotopy theory, including: homotopy groups with coefficients; localization and completion; the Hopf invariants of Hilton, James, and Toda; Samelson products; homotopy Bockstein spectral sequences; graded Lie algebras; differential homological algebra; and the exponent theorems concerning the homotopy groups of spheres and Moore spaces. This book is suitable for a course in unstable homotopy theory, following a first course in homotopy theory. It is also a valuable reference for both experts and graduate students wishing to enter the field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Methode</subfield><subfield code="0">(DE-588)4141841-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraische Methode</subfield><subfield code="0">(DE-588)4141841-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-76037-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511691638</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350965</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511691638</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511691638</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941995 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511691638 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350965 |
oclc_num | 839034162 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xix, 554 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge University Press |
record_format | marc |
series2 | New mathematical monographs |
spelling | Neisendorfer, Joseph 1945- Verfasser aut Algebraic methods in unstable homotopy theory Joseph Neisendorfer Cambridge Cambridge University Press 2010 1 online resource (xix, 554 pages) txt rdacontent c rdamedia cr rdacarrier New mathematical monographs 12 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Homotopy groups with coefficients A general theory of localization Fibre extensions of squares and the Peterson-Stein formula Hilton-Hopf invariants and the EHP sequence James-Hopf invariants and Toda-Hopf invariants Samelson products Bockstein spectral sequences Lie algebras and universal enveloping algebras Applications of graded Lie algebras Differential homological algebra Odd primary exponent theorems Differential homological algebra of classifying spaces Machine generated contents note: Preface; Introduction; 1. Homotopy groups with coefficients; 2. A general theory of localization; 3. Fibre extensions of squares and the Peterson-Stein formula; 4. Hilton-Hopf invariants and the EHP sequence; 5. James-Hopf invariants and Toda-Hopf invariants; 6. Samelson products; 7. Bockstein spectral sequences; 8. Lie algebras and universal enveloping algebras; 9. Applications of graded Lie algebras; 10. Differential homological algebra; 11. Odd primary exponent theorems; 12. Differential homological algebra of classifying spaces; Bibliography; Index The most modern and thorough treatment of unstable homotopy theory available. The focus is on those methods from algebraic topology which are needed in the presentation of results, proven by Cohen, Moore, and the author, on the exponents of homotopy groups. The author introduces various aspects of unstable homotopy theory, including: homotopy groups with coefficients; localization and completion; the Hopf invariants of Hilton, James, and Toda; Samelson products; homotopy Bockstein spectral sequences; graded Lie algebras; differential homological algebra; and the exponent theorems concerning the homotopy groups of spheres and Moore spaces. This book is suitable for a course in unstable homotopy theory, following a first course in homotopy theory. It is also a valuable reference for both experts and graduate students wishing to enter the field Homotopy theory Algebraic topology Algebraische Methode (DE-588)4141841-4 gnd rswk-swf Homotopietheorie (DE-588)4128142-1 gnd rswk-swf Homotopietheorie (DE-588)4128142-1 s Algebraische Methode (DE-588)4141841-4 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-76037-9 https://doi.org/10.1017/CBO9780511691638 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Neisendorfer, Joseph 1945- Algebraic methods in unstable homotopy theory Homotopy groups with coefficients A general theory of localization Fibre extensions of squares and the Peterson-Stein formula Hilton-Hopf invariants and the EHP sequence James-Hopf invariants and Toda-Hopf invariants Samelson products Bockstein spectral sequences Lie algebras and universal enveloping algebras Applications of graded Lie algebras Differential homological algebra Odd primary exponent theorems Differential homological algebra of classifying spaces Machine generated contents note: Preface; Introduction; 1. Homotopy groups with coefficients; 2. A general theory of localization; 3. Fibre extensions of squares and the Peterson-Stein formula; 4. Hilton-Hopf invariants and the EHP sequence; 5. James-Hopf invariants and Toda-Hopf invariants; 6. Samelson products; 7. Bockstein spectral sequences; 8. Lie algebras and universal enveloping algebras; 9. Applications of graded Lie algebras; 10. Differential homological algebra; 11. Odd primary exponent theorems; 12. Differential homological algebra of classifying spaces; Bibliography; Index Homotopy theory Algebraic topology Algebraische Methode (DE-588)4141841-4 gnd Homotopietheorie (DE-588)4128142-1 gnd |
subject_GND | (DE-588)4141841-4 (DE-588)4128142-1 |
title | Algebraic methods in unstable homotopy theory |
title_alt | Homotopy groups with coefficients A general theory of localization Fibre extensions of squares and the Peterson-Stein formula Hilton-Hopf invariants and the EHP sequence James-Hopf invariants and Toda-Hopf invariants Samelson products Bockstein spectral sequences Lie algebras and universal enveloping algebras Applications of graded Lie algebras Differential homological algebra Odd primary exponent theorems Differential homological algebra of classifying spaces Machine generated contents note: Preface; Introduction; 1. Homotopy groups with coefficients; 2. A general theory of localization; 3. Fibre extensions of squares and the Peterson-Stein formula; 4. Hilton-Hopf invariants and the EHP sequence; 5. James-Hopf invariants and Toda-Hopf invariants; 6. Samelson products; 7. Bockstein spectral sequences; 8. Lie algebras and universal enveloping algebras; 9. Applications of graded Lie algebras; 10. Differential homological algebra; 11. Odd primary exponent theorems; 12. Differential homological algebra of classifying spaces; Bibliography; Index |
title_auth | Algebraic methods in unstable homotopy theory |
title_exact_search | Algebraic methods in unstable homotopy theory |
title_full | Algebraic methods in unstable homotopy theory Joseph Neisendorfer |
title_fullStr | Algebraic methods in unstable homotopy theory Joseph Neisendorfer |
title_full_unstemmed | Algebraic methods in unstable homotopy theory Joseph Neisendorfer |
title_short | Algebraic methods in unstable homotopy theory |
title_sort | algebraic methods in unstable homotopy theory |
topic | Homotopy theory Algebraic topology Algebraische Methode (DE-588)4141841-4 gnd Homotopietheorie (DE-588)4128142-1 gnd |
topic_facet | Homotopy theory Algebraic topology Algebraische Methode Homotopietheorie |
url | https://doi.org/10.1017/CBO9780511691638 |
work_keys_str_mv | AT neisendorferjoseph algebraicmethodsinunstablehomotopytheory |