Quasi-Frobenius rings:
A ring is called quasi-Frobenius if it is right or left selfinjective, and right or left artinian (all four combinations are equivalent). The study of these rings grew out of the theory of representations of a finite group as a group of matrices over a field, and the subject is intimately related to...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2003
|
Schriftenreihe: | Cambridge tracts in mathematics
158 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | A ring is called quasi-Frobenius if it is right or left selfinjective, and right or left artinian (all four combinations are equivalent). The study of these rings grew out of the theory of representations of a finite group as a group of matrices over a field, and the subject is intimately related to duality, the duality from right to left modules induced by the hom functor and the duality related to annihilators. The present extent of the theory is vast, and this book makes no attempt to be encyclopedic; instead it provides an elementary, self-contained account of the basic facts about these rings at a level allowing researchers and graduate students to gain entry to the field |
Beschreibung: | 1 Online-Ressource (xvii, 307 Seiten) |
ISBN: | 9780511546525 |
DOI: | 10.1017/CBO9780511546525 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941984 | ||
003 | DE-604 | ||
005 | 20190429 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780511546525 |c Online |9 978-0-511-54652-5 | ||
024 | 7 | |a 10.1017/CBO9780511546525 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511546525 | ||
035 | |a (OCoLC)850444645 | ||
035 | |a (DE-599)BVBBV043941984 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 512/.4 |2 21 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Nicholson, W. Keith |d 1938- |e Verfasser |0 (DE-588)1022416685 |4 aut | |
245 | 1 | 0 | |a Quasi-Frobenius rings |c W.K. Nicholson, M.F. Yousif |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2003 | |
300 | |a 1 Online-Ressource (xvii, 307 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 158 | |
505 | 8 | |a Background -- Mininjective rings -- Semiperfect mininjective rings -- Min-CS rings -- Principally injective and FP rings -- Simple injective and dual rings -- FGF rings -- Johns rings -- A generic example -- Morita equivalence -- Perfect, semiperfect, and semiregular rings -- The Camps-Dicks theorem | |
520 | |a A ring is called quasi-Frobenius if it is right or left selfinjective, and right or left artinian (all four combinations are equivalent). The study of these rings grew out of the theory of representations of a finite group as a group of matrices over a field, and the subject is intimately related to duality, the duality from right to left modules induced by the hom functor and the duality related to annihilators. The present extent of the theory is vast, and this book makes no attempt to be encyclopedic; instead it provides an elementary, self-contained account of the basic facts about these rings at a level allowing researchers and graduate students to gain entry to the field | ||
650 | 4 | |a Quasi-Frobenius rings | |
650 | 0 | 7 | |a Quasi-Frobenius-Ring |0 (DE-588)4176637-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quasi-Frobenius-Ring |0 (DE-588)4176637-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Yousif, Mohamed F. |e Sonstige |0 (DE-588)1146446977 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-81593-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511546525 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350954 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511546525 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511546525 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511546525 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884345339904 |
---|---|
any_adam_object | |
author | Nicholson, W. Keith 1938- |
author_GND | (DE-588)1022416685 (DE-588)1146446977 |
author_facet | Nicholson, W. Keith 1938- |
author_role | aut |
author_sort | Nicholson, W. Keith 1938- |
author_variant | w k n wk wkn |
building | Verbundindex |
bvnumber | BV043941984 |
classification_rvk | SK 230 |
collection | ZDB-20-CBO |
contents | Background -- Mininjective rings -- Semiperfect mininjective rings -- Min-CS rings -- Principally injective and FP rings -- Simple injective and dual rings -- FGF rings -- Johns rings -- A generic example -- Morita equivalence -- Perfect, semiperfect, and semiregular rings -- The Camps-Dicks theorem |
ctrlnum | (ZDB-20-CBO)CR9780511546525 (OCoLC)850444645 (DE-599)BVBBV043941984 |
dewey-full | 512/.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.4 |
dewey-search | 512/.4 |
dewey-sort | 3512 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511546525 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02858nmm a2200469zcb4500</leader><controlfield tag="001">BV043941984</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190429 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511546525</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54652-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511546525</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511546525</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850444645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941984</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.4</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nicholson, W. Keith</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1022416685</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasi-Frobenius rings</subfield><subfield code="c">W.K. Nicholson, M.F. Yousif</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 307 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">158</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Background -- Mininjective rings -- Semiperfect mininjective rings -- Min-CS rings -- Principally injective and FP rings -- Simple injective and dual rings -- FGF rings -- Johns rings -- A generic example -- Morita equivalence -- Perfect, semiperfect, and semiregular rings -- The Camps-Dicks theorem</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A ring is called quasi-Frobenius if it is right or left selfinjective, and right or left artinian (all four combinations are equivalent). The study of these rings grew out of the theory of representations of a finite group as a group of matrices over a field, and the subject is intimately related to duality, the duality from right to left modules induced by the hom functor and the duality related to annihilators. The present extent of the theory is vast, and this book makes no attempt to be encyclopedic; instead it provides an elementary, self-contained account of the basic facts about these rings at a level allowing researchers and graduate students to gain entry to the field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasi-Frobenius rings</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quasi-Frobenius-Ring</subfield><subfield code="0">(DE-588)4176637-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quasi-Frobenius-Ring</subfield><subfield code="0">(DE-588)4176637-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yousif, Mohamed F.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1146446977</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-81593-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511546525</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350954</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546525</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546525</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546525</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941984 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511546525 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350954 |
oclc_num | 850444645 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xvii, 307 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Nicholson, W. Keith 1938- Verfasser (DE-588)1022416685 aut Quasi-Frobenius rings W.K. Nicholson, M.F. Yousif Cambridge Cambridge University Press 2003 1 Online-Ressource (xvii, 307 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 158 Background -- Mininjective rings -- Semiperfect mininjective rings -- Min-CS rings -- Principally injective and FP rings -- Simple injective and dual rings -- FGF rings -- Johns rings -- A generic example -- Morita equivalence -- Perfect, semiperfect, and semiregular rings -- The Camps-Dicks theorem A ring is called quasi-Frobenius if it is right or left selfinjective, and right or left artinian (all four combinations are equivalent). The study of these rings grew out of the theory of representations of a finite group as a group of matrices over a field, and the subject is intimately related to duality, the duality from right to left modules induced by the hom functor and the duality related to annihilators. The present extent of the theory is vast, and this book makes no attempt to be encyclopedic; instead it provides an elementary, self-contained account of the basic facts about these rings at a level allowing researchers and graduate students to gain entry to the field Quasi-Frobenius rings Quasi-Frobenius-Ring (DE-588)4176637-4 gnd rswk-swf Quasi-Frobenius-Ring (DE-588)4176637-4 s DE-604 Yousif, Mohamed F. Sonstige (DE-588)1146446977 oth Erscheint auch als Druck-Ausgabe 978-0-521-81593-2 https://doi.org/10.1017/CBO9780511546525 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Nicholson, W. Keith 1938- Quasi-Frobenius rings Background -- Mininjective rings -- Semiperfect mininjective rings -- Min-CS rings -- Principally injective and FP rings -- Simple injective and dual rings -- FGF rings -- Johns rings -- A generic example -- Morita equivalence -- Perfect, semiperfect, and semiregular rings -- The Camps-Dicks theorem Quasi-Frobenius rings Quasi-Frobenius-Ring (DE-588)4176637-4 gnd |
subject_GND | (DE-588)4176637-4 |
title | Quasi-Frobenius rings |
title_auth | Quasi-Frobenius rings |
title_exact_search | Quasi-Frobenius rings |
title_full | Quasi-Frobenius rings W.K. Nicholson, M.F. Yousif |
title_fullStr | Quasi-Frobenius rings W.K. Nicholson, M.F. Yousif |
title_full_unstemmed | Quasi-Frobenius rings W.K. Nicholson, M.F. Yousif |
title_short | Quasi-Frobenius rings |
title_sort | quasi frobenius rings |
topic | Quasi-Frobenius rings Quasi-Frobenius-Ring (DE-588)4176637-4 gnd |
topic_facet | Quasi-Frobenius rings Quasi-Frobenius-Ring |
url | https://doi.org/10.1017/CBO9780511546525 |
work_keys_str_mv | AT nicholsonwkeith quasifrobeniusrings AT yousifmohamedf quasifrobeniusrings |