Synthetic differential geometry:
Synthetic Differential Geometry is a method of reasoning in differential geometry and differential calculus, based on the assumption of sufficiently many nilpotent elements on the number line, in particular numbers d such that d2=0. The use of nilpotent elements allows one to replace the limit proce...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2006
|
Ausgabe: | Second edition |
Schriftenreihe: | London Mathematical Society lecture note series
333 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Synthetic Differential Geometry is a method of reasoning in differential geometry and differential calculus, based on the assumption of sufficiently many nilpotent elements on the number line, in particular numbers d such that d2=0. The use of nilpotent elements allows one to replace the limit processes of calculus by purely algebraic calculations and notions. For the first half of the book, first published in 2006, familiarity with differential calculus and abstract algebra is presupposed during the development of results in calculus and differential geometry on a purely axiomatic/synthetic basis. In the second half basic notions of category theory are presumed in the construction of suitable Cartesian closed categories and the interpretation of logical formulae within them. This is a second edition of Kock's classical text from 1981. Many notes have been included, with comments on developments in the field from the intermediate years, and almost 100 new bibliographic entries have been added |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (233 pages) |
ISBN: | 9780511550812 |
DOI: | 10.1017/CBO9780511550812 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941975 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2006 |||| o||u| ||||||eng d | ||
020 | |a 9780511550812 |c Online |9 978-0-511-55081-2 | ||
024 | 7 | |a 10.1017/CBO9780511550812 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511550812 | ||
035 | |a (OCoLC)850191007 | ||
035 | |a (DE-599)BVBBV043941975 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516.36 |2 22 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Kock, Anders |e Verfasser |4 aut | |
245 | 1 | 0 | |a Synthetic differential geometry |c Anders Kock |
250 | |a Second edition | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 2006 | |
300 | |a 1 online resource (233 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 333 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |g I. |t synthetic theory |g II. |t Categorical logic |g III. |t Models |
520 | |a Synthetic Differential Geometry is a method of reasoning in differential geometry and differential calculus, based on the assumption of sufficiently many nilpotent elements on the number line, in particular numbers d such that d2=0. The use of nilpotent elements allows one to replace the limit processes of calculus by purely algebraic calculations and notions. For the first half of the book, first published in 2006, familiarity with differential calculus and abstract algebra is presupposed during the development of results in calculus and differential geometry on a purely axiomatic/synthetic basis. In the second half basic notions of category theory are presumed in the construction of suitable Cartesian closed categories and the interpretation of logical formulae within them. This is a second edition of Kock's classical text from 1981. Many notes have been included, with comments on developments in the field from the intermediate years, and almost 100 new bibliographic entries have been added | ||
650 | 4 | |a Geometry, Differential | |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-68738-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511550812 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350945 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511550812 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511550812 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884325416960 |
---|---|
any_adam_object | |
author | Kock, Anders |
author_facet | Kock, Anders |
author_role | aut |
author_sort | Kock, Anders |
author_variant | a k ak |
building | Verbundindex |
bvnumber | BV043941975 |
classification_rvk | SI 320 SK 370 |
collection | ZDB-20-CBO |
contents | synthetic theory Categorical logic Models |
ctrlnum | (ZDB-20-CBO)CR9780511550812 (OCoLC)850191007 (DE-599)BVBBV043941975 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511550812 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02935nmm a2200493zcb4500</leader><controlfield tag="001">BV043941975</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511550812</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-55081-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511550812</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511550812</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850191007</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941975</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kock, Anders</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Synthetic differential geometry</subfield><subfield code="c">Anders Kock</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (233 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">333</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="g">I.</subfield><subfield code="t">synthetic theory</subfield><subfield code="g">II.</subfield><subfield code="t">Categorical logic</subfield><subfield code="g">III.</subfield><subfield code="t">Models</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Synthetic Differential Geometry is a method of reasoning in differential geometry and differential calculus, based on the assumption of sufficiently many nilpotent elements on the number line, in particular numbers d such that d2=0. The use of nilpotent elements allows one to replace the limit processes of calculus by purely algebraic calculations and notions. For the first half of the book, first published in 2006, familiarity with differential calculus and abstract algebra is presupposed during the development of results in calculus and differential geometry on a purely axiomatic/synthetic basis. In the second half basic notions of category theory are presumed in the construction of suitable Cartesian closed categories and the interpretation of logical formulae within them. This is a second edition of Kock's classical text from 1981. Many notes have been included, with comments on developments in the field from the intermediate years, and almost 100 new bibliographic entries have been added</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-68738-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511550812</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350945</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511550812</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511550812</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941975 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511550812 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350945 |
oclc_num | 850191007 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (233 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Kock, Anders Verfasser aut Synthetic differential geometry Anders Kock Second edition Cambridge Cambridge University Press 2006 1 online resource (233 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 333 Title from publisher's bibliographic system (viewed on 05 Oct 2015) I. synthetic theory II. Categorical logic III. Models Synthetic Differential Geometry is a method of reasoning in differential geometry and differential calculus, based on the assumption of sufficiently many nilpotent elements on the number line, in particular numbers d such that d2=0. The use of nilpotent elements allows one to replace the limit processes of calculus by purely algebraic calculations and notions. For the first half of the book, first published in 2006, familiarity with differential calculus and abstract algebra is presupposed during the development of results in calculus and differential geometry on a purely axiomatic/synthetic basis. In the second half basic notions of category theory are presumed in the construction of suitable Cartesian closed categories and the interpretation of logical formulae within them. This is a second edition of Kock's classical text from 1981. Many notes have been included, with comments on developments in the field from the intermediate years, and almost 100 new bibliographic entries have been added Geometry, Differential Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-68738-6 https://doi.org/10.1017/CBO9780511550812 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kock, Anders Synthetic differential geometry synthetic theory Categorical logic Models Geometry, Differential Differentialgeometrie (DE-588)4012248-7 gnd |
subject_GND | (DE-588)4012248-7 |
title | Synthetic differential geometry |
title_alt | synthetic theory Categorical logic Models |
title_auth | Synthetic differential geometry |
title_exact_search | Synthetic differential geometry |
title_full | Synthetic differential geometry Anders Kock |
title_fullStr | Synthetic differential geometry Anders Kock |
title_full_unstemmed | Synthetic differential geometry Anders Kock |
title_short | Synthetic differential geometry |
title_sort | synthetic differential geometry |
topic | Geometry, Differential Differentialgeometrie (DE-588)4012248-7 gnd |
topic_facet | Geometry, Differential Differentialgeometrie |
url | https://doi.org/10.1017/CBO9780511550812 |
work_keys_str_mv | AT kockanders syntheticdifferentialgeometry |