Abstract regular polytopes:
Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than trad...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2002
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 92 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter's Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiii, 551 pages) |
ISBN: | 9780511546686 |
DOI: | 10.1017/CBO9780511546686 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941973 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780511546686 |c Online |9 978-0-511-54668-6 | ||
024 | 7 | |a 10.1017/CBO9780511546686 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511546686 | ||
035 | |a (OCoLC)967601479 | ||
035 | |a (DE-599)BVBBV043941973 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516.3/5 |2 21 | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
100 | 1 | |a McMullen, Peter |d 1942- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Abstract regular polytopes |c Peter McMullen, Egon Schulte |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2002 | |
300 | |a 1 online resource (xiii, 551 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 92 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |g 1 |t Classical Regular Polytopes |g 2 |t Regular Polytopes |g 3 |t Coxeter Groups |g 4 |t Amalgamation |g 5 |t Realizations |g 6 |t Regular Polytopes on Space-Forms |g 7 |t Mixing |g 8 |t Twisting |g 9 |t Unitary Groups and Hermitian Forms |g 10 |t Locally Toroidal 4-Polytopes: I |g 11 |t Locally Toroidal 4-Polytopes: II |g 12 |t Higher Toroidal Polytopes |g 13 |t Regular Polytopes Related to Linear Groups |g 14 |t Miscellaneous Classes of Regular Polytopes |
520 | |a Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter's Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory | ||
650 | 4 | |a Polytopes | |
650 | 0 | 7 | |a Regelmäßiges Polytop |0 (DE-588)4177373-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polytop |0 (DE-588)4175324-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Regelmäßiges Polytop |0 (DE-588)4177373-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Polytop |0 (DE-588)4175324-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Schulte, Egon |d 1955- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-81496-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511546686 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350943 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511546686 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511546686 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884321222656 |
---|---|
any_adam_object | |
author | McMullen, Peter 1942- |
author_facet | McMullen, Peter 1942- |
author_role | aut |
author_sort | McMullen, Peter 1942- |
author_variant | p m pm |
building | Verbundindex |
bvnumber | BV043941973 |
classification_rvk | SK 380 |
collection | ZDB-20-CBO |
contents | Classical Regular Polytopes Regular Polytopes Coxeter Groups Amalgamation Realizations Regular Polytopes on Space-Forms Mixing Twisting Unitary Groups and Hermitian Forms Locally Toroidal 4-Polytopes: I Locally Toroidal 4-Polytopes: II Higher Toroidal Polytopes Regular Polytopes Related to Linear Groups Miscellaneous Classes of Regular Polytopes |
ctrlnum | (ZDB-20-CBO)CR9780511546686 (OCoLC)967601479 (DE-599)BVBBV043941973 |
dewey-full | 516.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/5 |
dewey-search | 516.3/5 |
dewey-sort | 3516.3 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511546686 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03607nmm a2200529zcb4500</leader><controlfield tag="001">BV043941973</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511546686</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54668-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511546686</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511546686</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967601479</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941973</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/5</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McMullen, Peter</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Abstract regular polytopes</subfield><subfield code="c">Peter McMullen, Egon Schulte</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 551 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 92</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="g">1</subfield><subfield code="t">Classical Regular Polytopes</subfield><subfield code="g">2</subfield><subfield code="t">Regular Polytopes</subfield><subfield code="g">3</subfield><subfield code="t">Coxeter Groups</subfield><subfield code="g">4</subfield><subfield code="t">Amalgamation</subfield><subfield code="g">5</subfield><subfield code="t">Realizations</subfield><subfield code="g">6</subfield><subfield code="t">Regular Polytopes on Space-Forms</subfield><subfield code="g">7</subfield><subfield code="t">Mixing</subfield><subfield code="g">8</subfield><subfield code="t">Twisting</subfield><subfield code="g">9</subfield><subfield code="t">Unitary Groups and Hermitian Forms</subfield><subfield code="g">10</subfield><subfield code="t">Locally Toroidal 4-Polytopes: I</subfield><subfield code="g">11</subfield><subfield code="t">Locally Toroidal 4-Polytopes: II</subfield><subfield code="g">12</subfield><subfield code="t">Higher Toroidal Polytopes</subfield><subfield code="g">13</subfield><subfield code="t">Regular Polytopes Related to Linear Groups</subfield><subfield code="g">14</subfield><subfield code="t">Miscellaneous Classes of Regular Polytopes</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter's Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polytopes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regelmäßiges Polytop</subfield><subfield code="0">(DE-588)4177373-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polytop</subfield><subfield code="0">(DE-588)4175324-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Regelmäßiges Polytop</subfield><subfield code="0">(DE-588)4177373-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Polytop</subfield><subfield code="0">(DE-588)4175324-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schulte, Egon</subfield><subfield code="d">1955-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-81496-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511546686</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350943</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546686</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546686</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941973 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511546686 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350943 |
oclc_num | 967601479 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 551 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | McMullen, Peter 1942- Verfasser aut Abstract regular polytopes Peter McMullen, Egon Schulte Cambridge Cambridge University Press 2002 1 online resource (xiii, 551 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 92 Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1 Classical Regular Polytopes 2 Regular Polytopes 3 Coxeter Groups 4 Amalgamation 5 Realizations 6 Regular Polytopes on Space-Forms 7 Mixing 8 Twisting 9 Unitary Groups and Hermitian Forms 10 Locally Toroidal 4-Polytopes: I 11 Locally Toroidal 4-Polytopes: II 12 Higher Toroidal Polytopes 13 Regular Polytopes Related to Linear Groups 14 Miscellaneous Classes of Regular Polytopes Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter's Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory Polytopes Regelmäßiges Polytop (DE-588)4177373-1 gnd rswk-swf Polytop (DE-588)4175324-0 gnd rswk-swf Regelmäßiges Polytop (DE-588)4177373-1 s 1\p DE-604 Polytop (DE-588)4175324-0 s 2\p DE-604 Schulte, Egon 1955- Sonstige oth Erscheint auch als Druckausgabe 978-0-521-81496-6 https://doi.org/10.1017/CBO9780511546686 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | McMullen, Peter 1942- Abstract regular polytopes Classical Regular Polytopes Regular Polytopes Coxeter Groups Amalgamation Realizations Regular Polytopes on Space-Forms Mixing Twisting Unitary Groups and Hermitian Forms Locally Toroidal 4-Polytopes: I Locally Toroidal 4-Polytopes: II Higher Toroidal Polytopes Regular Polytopes Related to Linear Groups Miscellaneous Classes of Regular Polytopes Polytopes Regelmäßiges Polytop (DE-588)4177373-1 gnd Polytop (DE-588)4175324-0 gnd |
subject_GND | (DE-588)4177373-1 (DE-588)4175324-0 |
title | Abstract regular polytopes |
title_alt | Classical Regular Polytopes Regular Polytopes Coxeter Groups Amalgamation Realizations Regular Polytopes on Space-Forms Mixing Twisting Unitary Groups and Hermitian Forms Locally Toroidal 4-Polytopes: I Locally Toroidal 4-Polytopes: II Higher Toroidal Polytopes Regular Polytopes Related to Linear Groups Miscellaneous Classes of Regular Polytopes |
title_auth | Abstract regular polytopes |
title_exact_search | Abstract regular polytopes |
title_full | Abstract regular polytopes Peter McMullen, Egon Schulte |
title_fullStr | Abstract regular polytopes Peter McMullen, Egon Schulte |
title_full_unstemmed | Abstract regular polytopes Peter McMullen, Egon Schulte |
title_short | Abstract regular polytopes |
title_sort | abstract regular polytopes |
topic | Polytopes Regelmäßiges Polytop (DE-588)4177373-1 gnd Polytop (DE-588)4175324-0 gnd |
topic_facet | Polytopes Regelmäßiges Polytop Polytop |
url | https://doi.org/10.1017/CBO9780511546686 |
work_keys_str_mv | AT mcmullenpeter abstractregularpolytopes AT schulteegon abstractregularpolytopes |