The Lévy Laplacian:
The Lévy Laplacian is an infinite-dimensional generalization of the well-known classical Laplacian. The theory has become well developed in recent years and this book was the first systematic treatment of the Lévy–Laplace operator. The book describes the infinite-dimensional analogues of finite-dime...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2005
|
Schriftenreihe: | Cambridge tracts in mathematics
166 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | The Lévy Laplacian is an infinite-dimensional generalization of the well-known classical Laplacian. The theory has become well developed in recent years and this book was the first systematic treatment of the Lévy–Laplace operator. The book describes the infinite-dimensional analogues of finite-dimensional results, and more especially those features which appear only in the generalized context. It develops a theory of operators generated by the Lévy Laplacian and the symmetrized Lévy Laplacian, as well as a theory of linear and nonlinear equations involving it. There are many problems leading to equations with Lévy Laplacians and to Lévy–Laplace operators, for example superconductivity theory, the theory of control systems, the Gauss random field theory, and the Yang–Mills equation. The book is complemented by an exhaustive bibliography. The result is a work that will be valued by those working in functional analysis, partial differential equations and probability theory |
Beschreibung: | 1 Online-Ressource (vi, 153 Seiten) |
ISBN: | 9780511543029 |
DOI: | 10.1017/CBO9780511543029 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941969 | ||
003 | DE-604 | ||
005 | 20190328 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2005 |||| o||u| ||||||eng d | ||
020 | |a 9780511543029 |c Online |9 978-0-511-54302-9 | ||
024 | 7 | |a 10.1017/CBO9780511543029 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511543029 | ||
035 | |a (OCoLC)699107078 | ||
035 | |a (DE-599)BVBBV043941969 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 515/.7242 |2 22 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Feller, Michail N. |d 1928- |e Verfasser |0 (DE-588)173798470 |4 aut | |
245 | 1 | 0 | |a The Lévy Laplacian |c M.N. Feller |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2005 | |
300 | |a 1 Online-Ressource (vi, 153 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 166 | |
505 | 8 | |a The Lévy Laplacian -- Lévy-Laplace operators -- Symmetric Lévy-Laplace operator -- Harmonic functions of infinitely many variables -- Linear elliptic and parabolic equations with Lévy Laplacians -- Quasilinear and nonlinear elliptic equation with Lévy Laplacians -- Nonlinear parabolic equations with Lévy Laplacians | |
520 | |a The Lévy Laplacian is an infinite-dimensional generalization of the well-known classical Laplacian. The theory has become well developed in recent years and this book was the first systematic treatment of the Lévy–Laplace operator. The book describes the infinite-dimensional analogues of finite-dimensional results, and more especially those features which appear only in the generalized context. It develops a theory of operators generated by the Lévy Laplacian and the symmetrized Lévy Laplacian, as well as a theory of linear and nonlinear equations involving it. There are many problems leading to equations with Lévy Laplacians and to Lévy–Laplace operators, for example superconductivity theory, the theory of control systems, the Gauss random field theory, and the Yang–Mills equation. The book is complemented by an exhaustive bibliography. The result is a work that will be valued by those working in functional analysis, partial differential equations and probability theory | ||
650 | 4 | |a Laplacian operator | |
650 | 4 | |a Lévy processes | |
650 | 4 | |a Harmonic functions | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-84622-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-18384-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511543029 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350939 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511543029 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511543029 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511543029 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884318076928 |
---|---|
any_adam_object | |
author | Feller, Michail N. 1928- |
author_GND | (DE-588)173798470 |
author_facet | Feller, Michail N. 1928- |
author_role | aut |
author_sort | Feller, Michail N. 1928- |
author_variant | m n f mn mnf |
building | Verbundindex |
bvnumber | BV043941969 |
classification_rvk | SK 620 |
collection | ZDB-20-CBO |
contents | The Lévy Laplacian -- Lévy-Laplace operators -- Symmetric Lévy-Laplace operator -- Harmonic functions of infinitely many variables -- Linear elliptic and parabolic equations with Lévy Laplacians -- Quasilinear and nonlinear elliptic equation with Lévy Laplacians -- Nonlinear parabolic equations with Lévy Laplacians |
ctrlnum | (ZDB-20-CBO)CR9780511543029 (OCoLC)699107078 (DE-599)BVBBV043941969 |
dewey-full | 515/.7242 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.7242 |
dewey-search | 515/.7242 |
dewey-sort | 3515 47242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511543029 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03087nmm a2200457zcb4500</leader><controlfield tag="001">BV043941969</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190328 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2005 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511543029</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54302-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511543029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511543029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)699107078</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941969</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.7242</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feller, Michail N.</subfield><subfield code="d">1928-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)173798470</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Lévy Laplacian</subfield><subfield code="c">M.N. Feller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vi, 153 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">166</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The Lévy Laplacian -- Lévy-Laplace operators -- Symmetric Lévy-Laplace operator -- Harmonic functions of infinitely many variables -- Linear elliptic and parabolic equations with Lévy Laplacians -- Quasilinear and nonlinear elliptic equation with Lévy Laplacians -- Nonlinear parabolic equations with Lévy Laplacians</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Lévy Laplacian is an infinite-dimensional generalization of the well-known classical Laplacian. The theory has become well developed in recent years and this book was the first systematic treatment of the Lévy–Laplace operator. The book describes the infinite-dimensional analogues of finite-dimensional results, and more especially those features which appear only in the generalized context. It develops a theory of operators generated by the Lévy Laplacian and the symmetrized Lévy Laplacian, as well as a theory of linear and nonlinear equations involving it. There are many problems leading to equations with Lévy Laplacians and to Lévy–Laplace operators, for example superconductivity theory, the theory of control systems, the Gauss random field theory, and the Yang–Mills equation. The book is complemented by an exhaustive bibliography. The result is a work that will be valued by those working in functional analysis, partial differential equations and probability theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laplacian operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lévy processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic functions</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-84622-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-18384-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511543029</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350939</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511543029</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511543029</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511543029</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941969 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511543029 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350939 |
oclc_num | 699107078 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (vi, 153 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Feller, Michail N. 1928- Verfasser (DE-588)173798470 aut The Lévy Laplacian M.N. Feller Cambridge Cambridge University Press 2005 1 Online-Ressource (vi, 153 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 166 The Lévy Laplacian -- Lévy-Laplace operators -- Symmetric Lévy-Laplace operator -- Harmonic functions of infinitely many variables -- Linear elliptic and parabolic equations with Lévy Laplacians -- Quasilinear and nonlinear elliptic equation with Lévy Laplacians -- Nonlinear parabolic equations with Lévy Laplacians The Lévy Laplacian is an infinite-dimensional generalization of the well-known classical Laplacian. The theory has become well developed in recent years and this book was the first systematic treatment of the Lévy–Laplace operator. The book describes the infinite-dimensional analogues of finite-dimensional results, and more especially those features which appear only in the generalized context. It develops a theory of operators generated by the Lévy Laplacian and the symmetrized Lévy Laplacian, as well as a theory of linear and nonlinear equations involving it. There are many problems leading to equations with Lévy Laplacians and to Lévy–Laplace operators, for example superconductivity theory, the theory of control systems, the Gauss random field theory, and the Yang–Mills equation. The book is complemented by an exhaustive bibliography. The result is a work that will be valued by those working in functional analysis, partial differential equations and probability theory Laplacian operator Lévy processes Harmonic functions Erscheint auch als Druck-Ausgabe 978-0-521-84622-6 Erscheint auch als Druck-Ausgabe 978-0-521-18384-0 https://doi.org/10.1017/CBO9780511543029 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Feller, Michail N. 1928- The Lévy Laplacian The Lévy Laplacian -- Lévy-Laplace operators -- Symmetric Lévy-Laplace operator -- Harmonic functions of infinitely many variables -- Linear elliptic and parabolic equations with Lévy Laplacians -- Quasilinear and nonlinear elliptic equation with Lévy Laplacians -- Nonlinear parabolic equations with Lévy Laplacians Laplacian operator Lévy processes Harmonic functions |
title | The Lévy Laplacian |
title_auth | The Lévy Laplacian |
title_exact_search | The Lévy Laplacian |
title_full | The Lévy Laplacian M.N. Feller |
title_fullStr | The Lévy Laplacian M.N. Feller |
title_full_unstemmed | The Lévy Laplacian M.N. Feller |
title_short | The Lévy Laplacian |
title_sort | the levy laplacian |
topic | Laplacian operator Lévy processes Harmonic functions |
topic_facet | Laplacian operator Lévy processes Harmonic functions |
url | https://doi.org/10.1017/CBO9780511543029 |
work_keys_str_mv | AT fellermichailn thelevylaplacian |