Harmonic approximation:
The subject of harmonic approximation has recently matured into a coherent research area with extensive applications. This is the first book to give a systematic account of these developments, beginning with classical results concerning uniform approximation on compact sets, and progressing through...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1995
|
Schriftenreihe: | London Mathematical Society lecture note series
221 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | The subject of harmonic approximation has recently matured into a coherent research area with extensive applications. This is the first book to give a systematic account of these developments, beginning with classical results concerning uniform approximation on compact sets, and progressing through fusion techniques to deal with approximation on unbounded sets. All the time inspiration is drawn from holomorphic results such as the well-known theorems of Runge and Mergelyan. The final two chapters deal with wide-ranging and surprising applications to the Dirichlet problem, maximum principle, Radon transform and the construction of pathological harmonic functions. This book is aimed at graduate students and researchers who have some knowledge of subharmonic functions, or an interest in holomorphic approximation |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiii, 132 pages) |
ISBN: | 9780511526220 |
DOI: | 10.1017/CBO9780511526220 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941959 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1995 |||| o||u| ||||||eng d | ||
020 | |a 9780511526220 |c Online |9 978-0-511-52622-0 | ||
024 | 7 | |a 10.1017/CBO9780511526220 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511526220 | ||
035 | |a (OCoLC)849900672 | ||
035 | |a (DE-599)BVBBV043941959 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.785 |2 20 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 470 |0 (DE-625)143241: |2 rvk | ||
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
100 | 1 | |a Gardiner, Stephen J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Harmonic approximation |c Stephen J. Gardiner |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1995 | |
300 | |a 1 online resource (xiii, 132 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 221 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a 0. Review of thin sets -- 1. Approximation on compact sets -- 2. Fusion of harmonic functions -- 3. Approximation on relatively closed sets -- 4. Carleman approximation -- 5. Tangential approximation at infinity -- 6. Superharmonic extension and approximation -- 7. The Dirichlet problem with non-compact boundary -- 8. Further applications | |
520 | |a The subject of harmonic approximation has recently matured into a coherent research area with extensive applications. This is the first book to give a systematic account of these developments, beginning with classical results concerning uniform approximation on compact sets, and progressing through fusion techniques to deal with approximation on unbounded sets. All the time inspiration is drawn from holomorphic results such as the well-known theorems of Runge and Mergelyan. The final two chapters deal with wide-ranging and surprising applications to the Dirichlet problem, maximum principle, Radon transform and the construction of pathological harmonic functions. This book is aimed at graduate students and researchers who have some knowledge of subharmonic functions, or an interest in holomorphic approximation | ||
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Approximation theory | |
650 | 0 | 7 | |a Harmonische Funktion |0 (DE-588)4159122-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximation |0 (DE-588)4002498-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Harmonische Funktion |0 (DE-588)4159122-7 |D s |
689 | 0 | 1 | |a Approximation |0 (DE-588)4002498-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-49799-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511526220 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350929 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511526220 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511526220 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884291862528 |
---|---|
any_adam_object | |
author | Gardiner, Stephen J. |
author_facet | Gardiner, Stephen J. |
author_role | aut |
author_sort | Gardiner, Stephen J. |
author_variant | s j g sj sjg |
building | Verbundindex |
bvnumber | BV043941959 |
classification_rvk | SI 320 SK 470 SK 560 SK 750 |
collection | ZDB-20-CBO |
contents | 0. Review of thin sets -- 1. Approximation on compact sets -- 2. Fusion of harmonic functions -- 3. Approximation on relatively closed sets -- 4. Carleman approximation -- 5. Tangential approximation at infinity -- 6. Superharmonic extension and approximation -- 7. The Dirichlet problem with non-compact boundary -- 8. Further applications |
ctrlnum | (ZDB-20-CBO)CR9780511526220 (OCoLC)849900672 (DE-599)BVBBV043941959 |
dewey-full | 515/.785 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.785 |
dewey-search | 515/.785 |
dewey-sort | 3515 3785 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511526220 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03250nmm a2200541zcb4500</leader><controlfield tag="001">BV043941959</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526220</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-52622-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511526220</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511526220</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849900672</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941959</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.785</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gardiner, Stephen J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Harmonic approximation</subfield><subfield code="c">Stephen J. Gardiner</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 132 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">221</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">0. Review of thin sets -- 1. Approximation on compact sets -- 2. Fusion of harmonic functions -- 3. Approximation on relatively closed sets -- 4. Carleman approximation -- 5. Tangential approximation at infinity -- 6. Superharmonic extension and approximation -- 7. The Dirichlet problem with non-compact boundary -- 8. Further applications</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The subject of harmonic approximation has recently matured into a coherent research area with extensive applications. This is the first book to give a systematic account of these developments, beginning with classical results concerning uniform approximation on compact sets, and progressing through fusion techniques to deal with approximation on unbounded sets. All the time inspiration is drawn from holomorphic results such as the well-known theorems of Runge and Mergelyan. The final two chapters deal with wide-ranging and surprising applications to the Dirichlet problem, maximum principle, Radon transform and the construction of pathological harmonic functions. This book is aimed at graduate students and researchers who have some knowledge of subharmonic functions, or an interest in holomorphic approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Funktion</subfield><subfield code="0">(DE-588)4159122-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Harmonische Funktion</subfield><subfield code="0">(DE-588)4159122-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-49799-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511526220</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350929</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526220</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526220</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941959 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511526220 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350929 |
oclc_num | 849900672 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 132 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Gardiner, Stephen J. Verfasser aut Harmonic approximation Stephen J. Gardiner Cambridge Cambridge University Press 1995 1 online resource (xiii, 132 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 221 Title from publisher's bibliographic system (viewed on 05 Oct 2015) 0. Review of thin sets -- 1. Approximation on compact sets -- 2. Fusion of harmonic functions -- 3. Approximation on relatively closed sets -- 4. Carleman approximation -- 5. Tangential approximation at infinity -- 6. Superharmonic extension and approximation -- 7. The Dirichlet problem with non-compact boundary -- 8. Further applications The subject of harmonic approximation has recently matured into a coherent research area with extensive applications. This is the first book to give a systematic account of these developments, beginning with classical results concerning uniform approximation on compact sets, and progressing through fusion techniques to deal with approximation on unbounded sets. All the time inspiration is drawn from holomorphic results such as the well-known theorems of Runge and Mergelyan. The final two chapters deal with wide-ranging and surprising applications to the Dirichlet problem, maximum principle, Radon transform and the construction of pathological harmonic functions. This book is aimed at graduate students and researchers who have some knowledge of subharmonic functions, or an interest in holomorphic approximation Harmonic analysis Approximation theory Harmonische Funktion (DE-588)4159122-7 gnd rswk-swf Approximation (DE-588)4002498-2 gnd rswk-swf Harmonische Funktion (DE-588)4159122-7 s Approximation (DE-588)4002498-2 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-49799-2 https://doi.org/10.1017/CBO9780511526220 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gardiner, Stephen J. Harmonic approximation 0. Review of thin sets -- 1. Approximation on compact sets -- 2. Fusion of harmonic functions -- 3. Approximation on relatively closed sets -- 4. Carleman approximation -- 5. Tangential approximation at infinity -- 6. Superharmonic extension and approximation -- 7. The Dirichlet problem with non-compact boundary -- 8. Further applications Harmonic analysis Approximation theory Harmonische Funktion (DE-588)4159122-7 gnd Approximation (DE-588)4002498-2 gnd |
subject_GND | (DE-588)4159122-7 (DE-588)4002498-2 |
title | Harmonic approximation |
title_auth | Harmonic approximation |
title_exact_search | Harmonic approximation |
title_full | Harmonic approximation Stephen J. Gardiner |
title_fullStr | Harmonic approximation Stephen J. Gardiner |
title_full_unstemmed | Harmonic approximation Stephen J. Gardiner |
title_short | Harmonic approximation |
title_sort | harmonic approximation |
topic | Harmonic analysis Approximation theory Harmonische Funktion (DE-588)4159122-7 gnd Approximation (DE-588)4002498-2 gnd |
topic_facet | Harmonic analysis Approximation theory Harmonische Funktion Approximation |
url | https://doi.org/10.1017/CBO9780511526220 |
work_keys_str_mv | AT gardinerstephenj harmonicapproximation |