Higher operads, higher categories:
Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. The heart of this book...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2004
|
Schriftenreihe: | London Mathematical Society lecture note series
298 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. The heart of this book is the language of generalized operads. This is as natural and transparent a language for higher category theory as the language of sheaves is for algebraic geometry, or vector spaces for linear algebra. It is introduced carefully, then used to give simple descriptions of a variety of higher categorical structures. In particular, one possible definition of n-category is discussed in detail, and some common aspects of other possible definitions are established. This is the first book on the subject and lays its foundations. It will appeal to both graduate students and established researchers who wish to become acquainted with this modern branch of mathematics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiii, 433 pages) |
ISBN: | 9780511525896 |
DOI: | 10.1017/CBO9780511525896 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941958 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2004 |||| o||u| ||||||eng d | ||
020 | |a 9780511525896 |c Online |9 978-0-511-52589-6 | ||
024 | 7 | |a 10.1017/CBO9780511525896 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511525896 | ||
035 | |a (OCoLC)850372101 | ||
035 | |a (DE-599)BVBBV043941958 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512.62 |2 22 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
100 | 1 | |a Leinster, Tom |d 1971- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Higher operads, higher categories |c Tom Leinster |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2004 | |
300 | |a 1 online resource (xiii, 433 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 298 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Background: Classical categorical structures -- Classical operads and multicategories -- Notions of monoidal category -- Operads. Generalized operads and multicategories: basics -- Example: fc-multicategories -- Generalized operads and multicategories: further theory -- Opetopes -- n-categories: Globular operads -- A definition of weak n-category -- Other definitions of weak n-category -- Appendices: A. Symmetric structures -- B. Coherence for monoidal categories -- C. Special Cartesian monads -- D. Free multicategories -- E. Definitions of trees -- F. Free strict n-categories -- G. Initial operad-with-contraction | |
520 | |a Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. The heart of this book is the language of generalized operads. This is as natural and transparent a language for higher category theory as the language of sheaves is for algebraic geometry, or vector spaces for linear algebra. It is introduced carefully, then used to give simple descriptions of a variety of higher categorical structures. In particular, one possible definition of n-category is discussed in detail, and some common aspects of other possible definitions are established. This is the first book on the subject and lays its foundations. It will appeal to both graduate students and established researchers who wish to become acquainted with this modern branch of mathematics | ||
650 | 4 | |a Operads | |
650 | 4 | |a Categories (Mathematics) | |
650 | 0 | 7 | |a Kategorientheorie |0 (DE-588)4120552-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operade |0 (DE-588)4638722-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dimension n |0 (DE-588)4309313-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kategorientheorie |0 (DE-588)4120552-2 |D s |
689 | 0 | 1 | |a Dimension n |0 (DE-588)4309313-9 |D s |
689 | 0 | 2 | |a Operade |0 (DE-588)4638722-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-53215-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511525896 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350928 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511525896 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511525896 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884284522496 |
---|---|
any_adam_object | |
author | Leinster, Tom 1971- |
author_facet | Leinster, Tom 1971- |
author_role | aut |
author_sort | Leinster, Tom 1971- |
author_variant | t l tl |
building | Verbundindex |
bvnumber | BV043941958 |
classification_rvk | SI 320 SK 320 |
collection | ZDB-20-CBO |
contents | Background: Classical categorical structures -- Classical operads and multicategories -- Notions of monoidal category -- Operads. Generalized operads and multicategories: basics -- Example: fc-multicategories -- Generalized operads and multicategories: further theory -- Opetopes -- n-categories: Globular operads -- A definition of weak n-category -- Other definitions of weak n-category -- Appendices: A. Symmetric structures -- B. Coherence for monoidal categories -- C. Special Cartesian monads -- D. Free multicategories -- E. Definitions of trees -- F. Free strict n-categories -- G. Initial operad-with-contraction |
ctrlnum | (ZDB-20-CBO)CR9780511525896 (OCoLC)850372101 (DE-599)BVBBV043941958 |
dewey-full | 512.62 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.62 |
dewey-search | 512.62 |
dewey-sort | 3512.62 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511525896 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03677nmm a2200541zcb4500</leader><controlfield tag="001">BV043941958</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511525896</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-52589-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511525896</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511525896</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850372101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941958</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.62</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Leinster, Tom</subfield><subfield code="d">1971-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Higher operads, higher categories</subfield><subfield code="c">Tom Leinster</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 433 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">298</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Background: Classical categorical structures -- Classical operads and multicategories -- Notions of monoidal category -- Operads. Generalized operads and multicategories: basics -- Example: fc-multicategories -- Generalized operads and multicategories: further theory -- Opetopes -- n-categories: Globular operads -- A definition of weak n-category -- Other definitions of weak n-category -- Appendices: A. Symmetric structures -- B. Coherence for monoidal categories -- C. Special Cartesian monads -- D. Free multicategories -- E. Definitions of trees -- F. Free strict n-categories -- G. Initial operad-with-contraction</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. The heart of this book is the language of generalized operads. This is as natural and transparent a language for higher category theory as the language of sheaves is for algebraic geometry, or vector spaces for linear algebra. It is introduced carefully, then used to give simple descriptions of a variety of higher categorical structures. In particular, one possible definition of n-category is discussed in detail, and some common aspects of other possible definitions are established. This is the first book on the subject and lays its foundations. It will appeal to both graduate students and established researchers who wish to become acquainted with this modern branch of mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operads</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Categories (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operade</subfield><subfield code="0">(DE-588)4638722-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension n</subfield><subfield code="0">(DE-588)4309313-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension n</subfield><subfield code="0">(DE-588)4309313-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Operade</subfield><subfield code="0">(DE-588)4638722-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-53215-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511525896</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350928</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511525896</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511525896</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941958 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511525896 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350928 |
oclc_num | 850372101 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 433 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Leinster, Tom 1971- Verfasser aut Higher operads, higher categories Tom Leinster Cambridge Cambridge University Press 2004 1 online resource (xiii, 433 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 298 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Background: Classical categorical structures -- Classical operads and multicategories -- Notions of monoidal category -- Operads. Generalized operads and multicategories: basics -- Example: fc-multicategories -- Generalized operads and multicategories: further theory -- Opetopes -- n-categories: Globular operads -- A definition of weak n-category -- Other definitions of weak n-category -- Appendices: A. Symmetric structures -- B. Coherence for monoidal categories -- C. Special Cartesian monads -- D. Free multicategories -- E. Definitions of trees -- F. Free strict n-categories -- G. Initial operad-with-contraction Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. The heart of this book is the language of generalized operads. This is as natural and transparent a language for higher category theory as the language of sheaves is for algebraic geometry, or vector spaces for linear algebra. It is introduced carefully, then used to give simple descriptions of a variety of higher categorical structures. In particular, one possible definition of n-category is discussed in detail, and some common aspects of other possible definitions are established. This is the first book on the subject and lays its foundations. It will appeal to both graduate students and established researchers who wish to become acquainted with this modern branch of mathematics Operads Categories (Mathematics) Kategorientheorie (DE-588)4120552-2 gnd rswk-swf Operade (DE-588)4638722-5 gnd rswk-swf Dimension n (DE-588)4309313-9 gnd rswk-swf Kategorientheorie (DE-588)4120552-2 s Dimension n (DE-588)4309313-9 s Operade (DE-588)4638722-5 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-53215-0 https://doi.org/10.1017/CBO9780511525896 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Leinster, Tom 1971- Higher operads, higher categories Background: Classical categorical structures -- Classical operads and multicategories -- Notions of monoidal category -- Operads. Generalized operads and multicategories: basics -- Example: fc-multicategories -- Generalized operads and multicategories: further theory -- Opetopes -- n-categories: Globular operads -- A definition of weak n-category -- Other definitions of weak n-category -- Appendices: A. Symmetric structures -- B. Coherence for monoidal categories -- C. Special Cartesian monads -- D. Free multicategories -- E. Definitions of trees -- F. Free strict n-categories -- G. Initial operad-with-contraction Operads Categories (Mathematics) Kategorientheorie (DE-588)4120552-2 gnd Operade (DE-588)4638722-5 gnd Dimension n (DE-588)4309313-9 gnd |
subject_GND | (DE-588)4120552-2 (DE-588)4638722-5 (DE-588)4309313-9 |
title | Higher operads, higher categories |
title_auth | Higher operads, higher categories |
title_exact_search | Higher operads, higher categories |
title_full | Higher operads, higher categories Tom Leinster |
title_fullStr | Higher operads, higher categories Tom Leinster |
title_full_unstemmed | Higher operads, higher categories Tom Leinster |
title_short | Higher operads, higher categories |
title_sort | higher operads higher categories |
topic | Operads Categories (Mathematics) Kategorientheorie (DE-588)4120552-2 gnd Operade (DE-588)4638722-5 gnd Dimension n (DE-588)4309313-9 gnd |
topic_facet | Operads Categories (Mathematics) Kategorientheorie Operade Dimension n |
url | https://doi.org/10.1017/CBO9780511525896 |
work_keys_str_mv | AT leinstertom higheroperadshighercategories |