Random walks on infinite graphs and groups:
The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; Melbourne ; Madrid
Cambridge University Press
[2000]
|
Schriftenreihe: | Cambridge tracts in mathematics
138 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 UPA01 Volltext |
Zusammenfassung: | The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics |
Beschreibung: | 1 Online-Ressource (xi, 334 Seiten) |
ISBN: | 9780511470967 |
DOI: | 10.1017/CBO9780511470967 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941950 | ||
003 | DE-604 | ||
005 | 20231212 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2000 |||| o||u| ||||||eng d | ||
020 | |a 9780511470967 |c Online |9 978-0-511-47096-7 | ||
024 | 7 | |a 10.1017/CBO9780511470967 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511470967 | ||
035 | |a (OCoLC)849893153 | ||
035 | |a (DE-599)BVBBV043941950 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 |a DE-739 | ||
082 | 0 | |a 519.2/82 |2 21 | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
100 | 1 | |a Woess, Wolfgang |d 1954- |e Verfasser |0 (DE-588)124183077 |4 aut | |
245 | 1 | 0 | |a Random walks on infinite graphs and groups |c Wolfgang Woess |
264 | 1 | |a Cambridge ; Melbourne ; Madrid |b Cambridge University Press |c [2000] | |
264 | 4 | |c © 2000 | |
300 | |a 1 Online-Ressource (xi, 334 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 138 | |
505 | 8 | |a Ch. I. The type problem -- Ch. II. The spectral radius -- Ch. III. The asymptotic behaviour of transition probabilities -- Ch. IV. An introduction to topological boundary theory | |
520 | |a The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics | ||
650 | 4 | |a Random walks (Mathematics) | |
650 | 4 | |a Graph theory | |
650 | 4 | |a Infinite groups | |
650 | 0 | 7 | |a Unendlicher Graph |0 (DE-588)4390888-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unendliche Gruppe |0 (DE-588)4375539-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Irrfahrt |0 (DE-588)4561504-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Unendlicher Graph |0 (DE-588)4390888-3 |D s |
689 | 0 | 1 | |a Unendliche Gruppe |0 (DE-588)4375539-2 |D s |
689 | 0 | 2 | |a Irrfahrt |0 (DE-588)4561504-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-55292-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-06172-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511470967 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350920 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511470967 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511470967 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511470967 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511470967 |l UPA01 |p ZDB-20-CBO |q UPA_Einzelkauf_2023 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884266696704 |
---|---|
any_adam_object | |
author | Woess, Wolfgang 1954- |
author_GND | (DE-588)124183077 |
author_facet | Woess, Wolfgang 1954- |
author_role | aut |
author_sort | Woess, Wolfgang 1954- |
author_variant | w w ww |
building | Verbundindex |
bvnumber | BV043941950 |
classification_rvk | SK 820 |
collection | ZDB-20-CBO |
contents | Ch. I. The type problem -- Ch. II. The spectral radius -- Ch. III. The asymptotic behaviour of transition probabilities -- Ch. IV. An introduction to topological boundary theory |
ctrlnum | (ZDB-20-CBO)CR9780511470967 (OCoLC)849893153 (DE-599)BVBBV043941950 |
dewey-full | 519.2/82 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2/82 |
dewey-search | 519.2/82 |
dewey-sort | 3519.2 282 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511470967 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03450nmm a2200565zcb4500</leader><controlfield tag="001">BV043941950</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231212 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511470967</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-47096-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511470967</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511470967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849893153</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941950</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2/82</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Woess, Wolfgang</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124183077</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Random walks on infinite graphs and groups</subfield><subfield code="c">Wolfgang Woess</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; Melbourne ; Madrid</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">[2000]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 334 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">138</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Ch. I. The type problem -- Ch. II. The spectral radius -- Ch. III. The asymptotic behaviour of transition probabilities -- Ch. IV. An introduction to topological boundary theory</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random walks (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infinite groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unendlicher Graph</subfield><subfield code="0">(DE-588)4390888-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unendliche Gruppe</subfield><subfield code="0">(DE-588)4375539-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Irrfahrt</subfield><subfield code="0">(DE-588)4561504-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Unendlicher Graph</subfield><subfield code="0">(DE-588)4390888-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Unendliche Gruppe</subfield><subfield code="0">(DE-588)4375539-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Irrfahrt</subfield><subfield code="0">(DE-588)4561504-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-55292-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-06172-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511470967</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350920</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511470967</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511470967</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511470967</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511470967</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UPA_Einzelkauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941950 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511470967 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350920 |
oclc_num | 849893153 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR DE-739 |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR DE-739 |
physical | 1 Online-Ressource (xi, 334 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) ZDB-20-CBO UPA_Einzelkauf_2023 |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Woess, Wolfgang 1954- Verfasser (DE-588)124183077 aut Random walks on infinite graphs and groups Wolfgang Woess Cambridge ; Melbourne ; Madrid Cambridge University Press [2000] © 2000 1 Online-Ressource (xi, 334 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 138 Ch. I. The type problem -- Ch. II. The spectral radius -- Ch. III. The asymptotic behaviour of transition probabilities -- Ch. IV. An introduction to topological boundary theory The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics Random walks (Mathematics) Graph theory Infinite groups Unendlicher Graph (DE-588)4390888-3 gnd rswk-swf Unendliche Gruppe (DE-588)4375539-2 gnd rswk-swf Irrfahrt (DE-588)4561504-4 gnd rswk-swf Unendlicher Graph (DE-588)4390888-3 s Unendliche Gruppe (DE-588)4375539-2 s Irrfahrt (DE-588)4561504-4 s DE-604 Erscheint auch als Druck-Ausgabe 978-0-521-55292-9 Erscheint auch als Druck-Ausgabe 978-0-521-06172-8 https://doi.org/10.1017/CBO9780511470967 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Woess, Wolfgang 1954- Random walks on infinite graphs and groups Ch. I. The type problem -- Ch. II. The spectral radius -- Ch. III. The asymptotic behaviour of transition probabilities -- Ch. IV. An introduction to topological boundary theory Random walks (Mathematics) Graph theory Infinite groups Unendlicher Graph (DE-588)4390888-3 gnd Unendliche Gruppe (DE-588)4375539-2 gnd Irrfahrt (DE-588)4561504-4 gnd |
subject_GND | (DE-588)4390888-3 (DE-588)4375539-2 (DE-588)4561504-4 |
title | Random walks on infinite graphs and groups |
title_auth | Random walks on infinite graphs and groups |
title_exact_search | Random walks on infinite graphs and groups |
title_full | Random walks on infinite graphs and groups Wolfgang Woess |
title_fullStr | Random walks on infinite graphs and groups Wolfgang Woess |
title_full_unstemmed | Random walks on infinite graphs and groups Wolfgang Woess |
title_short | Random walks on infinite graphs and groups |
title_sort | random walks on infinite graphs and groups |
topic | Random walks (Mathematics) Graph theory Infinite groups Unendlicher Graph (DE-588)4390888-3 gnd Unendliche Gruppe (DE-588)4375539-2 gnd Irrfahrt (DE-588)4561504-4 gnd |
topic_facet | Random walks (Mathematics) Graph theory Infinite groups Unendlicher Graph Unendliche Gruppe Irrfahrt |
url | https://doi.org/10.1017/CBO9780511470967 |
work_keys_str_mv | AT woesswolfgang randomwalksoninfinitegraphsandgroups |