Mathematical aspects of Hodgkin-Huxley neural theory:
This book is an introduction to the study of mathematical models of electrically active cells, which play an essential role in, for example, nerve conduction and cardiac functions. This is an important and vigorously researched field. In the book, Dr Cronin synthesizes and reviews this material and...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1987
|
Schriftenreihe: | Cambridge studies in mathematical biology
7 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book is an introduction to the study of mathematical models of electrically active cells, which play an essential role in, for example, nerve conduction and cardiac functions. This is an important and vigorously researched field. In the book, Dr Cronin synthesizes and reviews this material and provides a detailed discussion of the Hodgkin-Huxley model for nerve conduction, which forms the cornerstone of this body of work. Her treatment includes a derivation of the Hodgkin-Huxley model, which is a system of four nonlinear differential equations; a discussion of the validity of this model; and a summary of some of the mathematical analysis carried out on this model. Special emphasis is placed on singular perturbation theory, and arguments, both mathematical and physiological, for using the perturbation viewpoint are presented |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 261 pages) |
ISBN: | 9780511983955 |
DOI: | 10.1017/CBO9780511983955 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941943 | ||
003 | DE-604 | ||
005 | 20171005 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1987 |||| o||u| ||||||eng d | ||
020 | |a 9780511983955 |c Online |9 978-0-511-98395-5 | ||
024 | 7 | |a 10.1017/CBO9780511983955 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511983955 | ||
035 | |a (OCoLC)859644519 | ||
035 | |a (DE-599)BVBBV043941943 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 599/.0188 |2 19eng | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a WW 4120 |0 (DE-625)159014:13423 |2 rvk | ||
100 | 1 | |a Cronin, Jane |d 1922-2018 |e Verfasser |0 (DE-588)122430166 |4 aut | |
245 | 1 | 0 | |a Mathematical aspects of Hodgkin-Huxley neural theory |c Jane Cronin |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1987 | |
300 | |a 1 online resource (xi, 261 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge studies in mathematical biology |v 7 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a 1. Introduction -- 2. Nerve conduction: the work of Hodgkin and Huxley -- 3. Nerve conduction: other mathematical models -- 4. Models of other electrically excitable cells -- 5. mathematical theory -- 6. Mathematical analysis of physiological models | |
520 | |a This book is an introduction to the study of mathematical models of electrically active cells, which play an essential role in, for example, nerve conduction and cardiac functions. This is an important and vigorously researched field. In the book, Dr Cronin synthesizes and reviews this material and provides a detailed discussion of the Hodgkin-Huxley model for nerve conduction, which forms the cornerstone of this body of work. Her treatment includes a derivation of the Hodgkin-Huxley model, which is a system of four nonlinear differential equations; a discussion of the validity of this model; and a summary of some of the mathematical analysis carried out on this model. Special emphasis is placed on singular perturbation theory, and arguments, both mathematical and physiological, for using the perturbation viewpoint are presented | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Neural conduction / Mathematical models | |
650 | 4 | |a Purkinje cells / Mathematical models | |
650 | 4 | |a Electrophysiology / Mathematical models | |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ionentheorie der Erregung |0 (DE-588)4335543-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektrophysiologie |0 (DE-588)4138132-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erregungsleitung |0 (DE-588)4135394-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ionentheorie der Erregung |0 (DE-588)4335543-2 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Erregungsleitung |0 (DE-588)4135394-8 |D s |
689 | 1 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Elektrophysiologie |0 (DE-588)4138132-4 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-06388-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-33482-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511983955 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350913 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511983955 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511983955 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884271939584 |
---|---|
any_adam_object | |
author | Cronin, Jane 1922-2018 |
author_GND | (DE-588)122430166 |
author_facet | Cronin, Jane 1922-2018 |
author_role | aut |
author_sort | Cronin, Jane 1922-2018 |
author_variant | j c jc |
building | Verbundindex |
bvnumber | BV043941943 |
classification_rvk | SK 950 WW 4120 |
collection | ZDB-20-CBO |
contents | 1. Introduction -- 2. Nerve conduction: the work of Hodgkin and Huxley -- 3. Nerve conduction: other mathematical models -- 4. Models of other electrically excitable cells -- 5. mathematical theory -- 6. Mathematical analysis of physiological models |
ctrlnum | (ZDB-20-CBO)CR9780511983955 (OCoLC)859644519 (DE-599)BVBBV043941943 |
dewey-full | 599/.0188 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 599 - Mammalia |
dewey-raw | 599/.0188 |
dewey-search | 599/.0188 |
dewey-sort | 3599 3188 |
dewey-tens | 590 - Animals |
discipline | Biologie Mathematik |
doi_str_mv | 10.1017/CBO9780511983955 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03895nmm a2200661zcb4500</leader><controlfield tag="001">BV043941943</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171005 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511983955</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-98395-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511983955</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511983955</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859644519</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941943</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">599/.0188</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WW 4120</subfield><subfield code="0">(DE-625)159014:13423</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cronin, Jane</subfield><subfield code="d">1922-2018</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122430166</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical aspects of Hodgkin-Huxley neural theory</subfield><subfield code="c">Jane Cronin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 261 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge studies in mathematical biology</subfield><subfield code="v">7</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Introduction -- 2. Nerve conduction: the work of Hodgkin and Huxley -- 3. Nerve conduction: other mathematical models -- 4. Models of other electrically excitable cells -- 5. mathematical theory -- 6. Mathematical analysis of physiological models</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is an introduction to the study of mathematical models of electrically active cells, which play an essential role in, for example, nerve conduction and cardiac functions. This is an important and vigorously researched field. In the book, Dr Cronin synthesizes and reviews this material and provides a detailed discussion of the Hodgkin-Huxley model for nerve conduction, which forms the cornerstone of this body of work. Her treatment includes a derivation of the Hodgkin-Huxley model, which is a system of four nonlinear differential equations; a discussion of the validity of this model; and a summary of some of the mathematical analysis carried out on this model. Special emphasis is placed on singular perturbation theory, and arguments, both mathematical and physiological, for using the perturbation viewpoint are presented</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural conduction / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Purkinje cells / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrophysiology / Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ionentheorie der Erregung</subfield><subfield code="0">(DE-588)4335543-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrophysiologie</subfield><subfield code="0">(DE-588)4138132-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erregungsleitung</subfield><subfield code="0">(DE-588)4135394-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ionentheorie der Erregung</subfield><subfield code="0">(DE-588)4335543-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Erregungsleitung</subfield><subfield code="0">(DE-588)4135394-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Elektrophysiologie</subfield><subfield code="0">(DE-588)4138132-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-06388-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-33482-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511983955</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350913</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511983955</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511983955</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941943 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511983955 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350913 |
oclc_num | 859644519 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xi, 261 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge studies in mathematical biology |
spelling | Cronin, Jane 1922-2018 Verfasser (DE-588)122430166 aut Mathematical aspects of Hodgkin-Huxley neural theory Jane Cronin Cambridge Cambridge University Press 1987 1 online resource (xi, 261 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in mathematical biology 7 Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1. Introduction -- 2. Nerve conduction: the work of Hodgkin and Huxley -- 3. Nerve conduction: other mathematical models -- 4. Models of other electrically excitable cells -- 5. mathematical theory -- 6. Mathematical analysis of physiological models This book is an introduction to the study of mathematical models of electrically active cells, which play an essential role in, for example, nerve conduction and cardiac functions. This is an important and vigorously researched field. In the book, Dr Cronin synthesizes and reviews this material and provides a detailed discussion of the Hodgkin-Huxley model for nerve conduction, which forms the cornerstone of this body of work. Her treatment includes a derivation of the Hodgkin-Huxley model, which is a system of four nonlinear differential equations; a discussion of the validity of this model; and a summary of some of the mathematical analysis carried out on this model. Special emphasis is placed on singular perturbation theory, and arguments, both mathematical and physiological, for using the perturbation viewpoint are presented Mathematisches Modell Neural conduction / Mathematical models Purkinje cells / Mathematical models Electrophysiology / Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Ionentheorie der Erregung (DE-588)4335543-2 gnd rswk-swf Elektrophysiologie (DE-588)4138132-4 gnd rswk-swf Erregungsleitung (DE-588)4135394-8 gnd rswk-swf Ionentheorie der Erregung (DE-588)4335543-2 s Mathematisches Modell (DE-588)4114528-8 s 1\p DE-604 Erregungsleitung (DE-588)4135394-8 s 2\p DE-604 Elektrophysiologie (DE-588)4138132-4 s 3\p DE-604 Erscheint auch als Druckausgabe 978-0-521-06388-3 Erscheint auch als Druckausgabe 978-0-521-33482-2 https://doi.org/10.1017/CBO9780511983955 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cronin, Jane 1922-2018 Mathematical aspects of Hodgkin-Huxley neural theory 1. Introduction -- 2. Nerve conduction: the work of Hodgkin and Huxley -- 3. Nerve conduction: other mathematical models -- 4. Models of other electrically excitable cells -- 5. mathematical theory -- 6. Mathematical analysis of physiological models Mathematisches Modell Neural conduction / Mathematical models Purkinje cells / Mathematical models Electrophysiology / Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd Ionentheorie der Erregung (DE-588)4335543-2 gnd Elektrophysiologie (DE-588)4138132-4 gnd Erregungsleitung (DE-588)4135394-8 gnd |
subject_GND | (DE-588)4114528-8 (DE-588)4335543-2 (DE-588)4138132-4 (DE-588)4135394-8 |
title | Mathematical aspects of Hodgkin-Huxley neural theory |
title_auth | Mathematical aspects of Hodgkin-Huxley neural theory |
title_exact_search | Mathematical aspects of Hodgkin-Huxley neural theory |
title_full | Mathematical aspects of Hodgkin-Huxley neural theory Jane Cronin |
title_fullStr | Mathematical aspects of Hodgkin-Huxley neural theory Jane Cronin |
title_full_unstemmed | Mathematical aspects of Hodgkin-Huxley neural theory Jane Cronin |
title_short | Mathematical aspects of Hodgkin-Huxley neural theory |
title_sort | mathematical aspects of hodgkin huxley neural theory |
topic | Mathematisches Modell Neural conduction / Mathematical models Purkinje cells / Mathematical models Electrophysiology / Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd Ionentheorie der Erregung (DE-588)4335543-2 gnd Elektrophysiologie (DE-588)4138132-4 gnd Erregungsleitung (DE-588)4135394-8 gnd |
topic_facet | Mathematisches Modell Neural conduction / Mathematical models Purkinje cells / Mathematical models Electrophysiology / Mathematical models Ionentheorie der Erregung Elektrophysiologie Erregungsleitung |
url | https://doi.org/10.1017/CBO9780511983955 |
work_keys_str_mv | AT croninjane mathematicalaspectsofhodgkinhuxleyneuraltheory |