Ergodicity for infinite dimensional systems:
This book is devoted to the asymptotic properties of solutions of stochastic evolution equations in infinite dimensional spaces. It is divided into three parts: Markovian dynamical systems; invariant measures for stochastic evolution equations; invariant measures for specific models. The focus is on...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1996
|
Schriftenreihe: | London Mathematical Society lecture note series
229 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book is devoted to the asymptotic properties of solutions of stochastic evolution equations in infinite dimensional spaces. It is divided into three parts: Markovian dynamical systems; invariant measures for stochastic evolution equations; invariant measures for specific models. The focus is on models of dynamical processes affected by white noise, which are described by partial differential equations such as the reaction-diffusion equations or Navier–Stokes equations. Besides existence and uniqueness questions, special attention is paid to the asymptotic behaviour of the solutions, to invariant measures and ergodicity. Some of the results found here are presented for the first time. For all whose research interests involve stochastic modelling, dynamical systems, or ergodic theory, this book will be an essential purchase |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 339 pages) |
ISBN: | 9780511662829 |
DOI: | 10.1017/CBO9780511662829 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941927 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1996 |||| o||u| ||||||eng d | ||
020 | |a 9780511662829 |c Online |9 978-0-511-66282-9 | ||
024 | 7 | |a 10.1017/CBO9780511662829 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511662829 | ||
035 | |a (OCoLC)967697327 | ||
035 | |a (DE-599)BVBBV043941927 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 519.2 |2 20 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 810 |0 (DE-625)143257: |2 rvk | ||
100 | 1 | |a Da Prato, Giuseppe |e Verfasser |4 aut | |
245 | 1 | 0 | |a Ergodicity for infinite dimensional systems |c G. Da Prato, J. Zabczyk |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1996 | |
300 | |a 1 online resource (xi, 339 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 229 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a I. Markovian Dynamical Systems. 1. General Dynamical Systems. 2. Canonical Markovian Systems. 3. Ergodic and mixing measures. 4. Regular Markovian systems -- II. Invariant measures for stochastic evolution equations. 5. Stochastic Differential Equations. 6. Existence of invariant measures. 7. Uniqueness of invariant measures. 8. Densities of invariant measures -- III. Invariant measures for specific models. 9. Ornstein -- Uhlenbeck processes. 10. Stochastic delay systems. 11. Reaction-Diffusion equations. 12. Spin systems. 13. Systems perturbed through the boundary. 14. Burgers equation. 15. Navier-Stokes equations -- IV. Appendices -- A Smoothing properties of convolutions -- B An estimate on modulus of continuity -- C A result on implicit functions | |
520 | |a This book is devoted to the asymptotic properties of solutions of stochastic evolution equations in infinite dimensional spaces. It is divided into three parts: Markovian dynamical systems; invariant measures for stochastic evolution equations; invariant measures for specific models. The focus is on models of dynamical processes affected by white noise, which are described by partial differential equations such as the reaction-diffusion equations or Navier–Stokes equations. Besides existence and uniqueness questions, special attention is paid to the asymptotic behaviour of the solutions, to invariant measures and ergodicity. Some of the results found here are presented for the first time. For all whose research interests involve stochastic modelling, dynamical systems, or ergodic theory, this book will be an essential purchase | ||
650 | 4 | |a Stochastic partial differential equations / Asymptotic theory | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 4 | |a Ergodic theory | |
650 | 0 | 7 | |a Evolutionsgleichung |0 (DE-588)4129061-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unendlichdimensionaler Raum |0 (DE-588)4207852-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotisches Lösungsverhalten |0 (DE-588)4134367-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Evolutionsgleichung |0 (DE-588)4129061-6 |D s |
689 | 0 | 1 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |D s |
689 | 0 | 2 | |a Unendlichdimensionaler Raum |0 (DE-588)4207852-0 |D s |
689 | 0 | 3 | |a Asymptotisches Lösungsverhalten |0 (DE-588)4134367-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Zabczyk, Jerzy |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-57900-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511662829 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350897 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511662829 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511662829 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884244676608 |
---|---|
any_adam_object | |
author | Da Prato, Giuseppe |
author_facet | Da Prato, Giuseppe |
author_role | aut |
author_sort | Da Prato, Giuseppe |
author_variant | p g d pg pgd |
building | Verbundindex |
bvnumber | BV043941927 |
classification_rvk | SI 320 SK 810 |
collection | ZDB-20-CBO |
contents | I. Markovian Dynamical Systems. 1. General Dynamical Systems. 2. Canonical Markovian Systems. 3. Ergodic and mixing measures. 4. Regular Markovian systems -- II. Invariant measures for stochastic evolution equations. 5. Stochastic Differential Equations. 6. Existence of invariant measures. 7. Uniqueness of invariant measures. 8. Densities of invariant measures -- III. Invariant measures for specific models. 9. Ornstein -- Uhlenbeck processes. 10. Stochastic delay systems. 11. Reaction-Diffusion equations. 12. Spin systems. 13. Systems perturbed through the boundary. 14. Burgers equation. 15. Navier-Stokes equations -- IV. Appendices -- A Smoothing properties of convolutions -- B An estimate on modulus of continuity -- C A result on implicit functions |
ctrlnum | (ZDB-20-CBO)CR9780511662829 (OCoLC)967697327 (DE-599)BVBBV043941927 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511662829 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04091nmm a2200589zcb4500</leader><controlfield tag="001">BV043941927</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662829</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66282-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511662829</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511662829</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967697327</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941927</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Da Prato, Giuseppe</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ergodicity for infinite dimensional systems</subfield><subfield code="c">G. Da Prato, J. Zabczyk</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 339 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">229</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">I. Markovian Dynamical Systems. 1. General Dynamical Systems. 2. Canonical Markovian Systems. 3. Ergodic and mixing measures. 4. Regular Markovian systems -- II. Invariant measures for stochastic evolution equations. 5. Stochastic Differential Equations. 6. Existence of invariant measures. 7. Uniqueness of invariant measures. 8. Densities of invariant measures -- III. Invariant measures for specific models. 9. Ornstein -- Uhlenbeck processes. 10. Stochastic delay systems. 11. Reaction-Diffusion equations. 12. Spin systems. 13. Systems perturbed through the boundary. 14. Burgers equation. 15. Navier-Stokes equations -- IV. Appendices -- A Smoothing properties of convolutions -- B An estimate on modulus of continuity -- C A result on implicit functions</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is devoted to the asymptotic properties of solutions of stochastic evolution equations in infinite dimensional spaces. It is divided into three parts: Markovian dynamical systems; invariant measures for stochastic evolution equations; invariant measures for specific models. The focus is on models of dynamical processes affected by white noise, which are described by partial differential equations such as the reaction-diffusion equations or Navier–Stokes equations. Besides existence and uniqueness questions, special attention is paid to the asymptotic behaviour of the solutions, to invariant measures and ergodicity. Some of the results found here are presented for the first time. For all whose research interests involve stochastic modelling, dynamical systems, or ergodic theory, this book will be an essential purchase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic partial differential equations / Asymptotic theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ergodic theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evolutionsgleichung</subfield><subfield code="0">(DE-588)4129061-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unendlichdimensionaler Raum</subfield><subfield code="0">(DE-588)4207852-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotisches Lösungsverhalten</subfield><subfield code="0">(DE-588)4134367-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Evolutionsgleichung</subfield><subfield code="0">(DE-588)4129061-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Unendlichdimensionaler Raum</subfield><subfield code="0">(DE-588)4207852-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Asymptotisches Lösungsverhalten</subfield><subfield code="0">(DE-588)4134367-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zabczyk, Jerzy</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-57900-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511662829</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350897</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662829</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662829</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941927 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511662829 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350897 |
oclc_num | 967697327 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xi, 339 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Da Prato, Giuseppe Verfasser aut Ergodicity for infinite dimensional systems G. Da Prato, J. Zabczyk Cambridge Cambridge University Press 1996 1 online resource (xi, 339 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 229 Title from publisher's bibliographic system (viewed on 05 Oct 2015) I. Markovian Dynamical Systems. 1. General Dynamical Systems. 2. Canonical Markovian Systems. 3. Ergodic and mixing measures. 4. Regular Markovian systems -- II. Invariant measures for stochastic evolution equations. 5. Stochastic Differential Equations. 6. Existence of invariant measures. 7. Uniqueness of invariant measures. 8. Densities of invariant measures -- III. Invariant measures for specific models. 9. Ornstein -- Uhlenbeck processes. 10. Stochastic delay systems. 11. Reaction-Diffusion equations. 12. Spin systems. 13. Systems perturbed through the boundary. 14. Burgers equation. 15. Navier-Stokes equations -- IV. Appendices -- A Smoothing properties of convolutions -- B An estimate on modulus of continuity -- C A result on implicit functions This book is devoted to the asymptotic properties of solutions of stochastic evolution equations in infinite dimensional spaces. It is divided into three parts: Markovian dynamical systems; invariant measures for stochastic evolution equations; invariant measures for specific models. The focus is on models of dynamical processes affected by white noise, which are described by partial differential equations such as the reaction-diffusion equations or Navier–Stokes equations. Besides existence and uniqueness questions, special attention is paid to the asymptotic behaviour of the solutions, to invariant measures and ergodicity. Some of the results found here are presented for the first time. For all whose research interests involve stochastic modelling, dynamical systems, or ergodic theory, this book will be an essential purchase Stochastic partial differential equations / Asymptotic theory Differentiable dynamical systems Ergodic theory Evolutionsgleichung (DE-588)4129061-6 gnd rswk-swf Unendlichdimensionaler Raum (DE-588)4207852-0 gnd rswk-swf Asymptotisches Lösungsverhalten (DE-588)4134367-0 gnd rswk-swf Stochastische Differentialgleichung (DE-588)4057621-8 gnd rswk-swf Evolutionsgleichung (DE-588)4129061-6 s Stochastische Differentialgleichung (DE-588)4057621-8 s Unendlichdimensionaler Raum (DE-588)4207852-0 s Asymptotisches Lösungsverhalten (DE-588)4134367-0 s 1\p DE-604 Zabczyk, Jerzy Sonstige oth Erscheint auch als Druckausgabe 978-0-521-57900-1 https://doi.org/10.1017/CBO9780511662829 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Da Prato, Giuseppe Ergodicity for infinite dimensional systems I. Markovian Dynamical Systems. 1. General Dynamical Systems. 2. Canonical Markovian Systems. 3. Ergodic and mixing measures. 4. Regular Markovian systems -- II. Invariant measures for stochastic evolution equations. 5. Stochastic Differential Equations. 6. Existence of invariant measures. 7. Uniqueness of invariant measures. 8. Densities of invariant measures -- III. Invariant measures for specific models. 9. Ornstein -- Uhlenbeck processes. 10. Stochastic delay systems. 11. Reaction-Diffusion equations. 12. Spin systems. 13. Systems perturbed through the boundary. 14. Burgers equation. 15. Navier-Stokes equations -- IV. Appendices -- A Smoothing properties of convolutions -- B An estimate on modulus of continuity -- C A result on implicit functions Stochastic partial differential equations / Asymptotic theory Differentiable dynamical systems Ergodic theory Evolutionsgleichung (DE-588)4129061-6 gnd Unendlichdimensionaler Raum (DE-588)4207852-0 gnd Asymptotisches Lösungsverhalten (DE-588)4134367-0 gnd Stochastische Differentialgleichung (DE-588)4057621-8 gnd |
subject_GND | (DE-588)4129061-6 (DE-588)4207852-0 (DE-588)4134367-0 (DE-588)4057621-8 |
title | Ergodicity for infinite dimensional systems |
title_auth | Ergodicity for infinite dimensional systems |
title_exact_search | Ergodicity for infinite dimensional systems |
title_full | Ergodicity for infinite dimensional systems G. Da Prato, J. Zabczyk |
title_fullStr | Ergodicity for infinite dimensional systems G. Da Prato, J. Zabczyk |
title_full_unstemmed | Ergodicity for infinite dimensional systems G. Da Prato, J. Zabczyk |
title_short | Ergodicity for infinite dimensional systems |
title_sort | ergodicity for infinite dimensional systems |
topic | Stochastic partial differential equations / Asymptotic theory Differentiable dynamical systems Ergodic theory Evolutionsgleichung (DE-588)4129061-6 gnd Unendlichdimensionaler Raum (DE-588)4207852-0 gnd Asymptotisches Lösungsverhalten (DE-588)4134367-0 gnd Stochastische Differentialgleichung (DE-588)4057621-8 gnd |
topic_facet | Stochastic partial differential equations / Asymptotic theory Differentiable dynamical systems Ergodic theory Evolutionsgleichung Unendlichdimensionaler Raum Asymptotisches Lösungsverhalten Stochastische Differentialgleichung |
url | https://doi.org/10.1017/CBO9780511662829 |
work_keys_str_mv | AT dapratogiuseppe ergodicityforinfinitedimensionalsystems AT zabczykjerzy ergodicityforinfinitedimensionalsystems |