Lectures on ergodic theory and Pesin theory on compact manifolds:
Pesin theory consists of the study of the theory of non-uniformly hyperbolic diffeomorphisms. The aim of this book is to provide the reader with a straightforward account of this theory, following the approaches of Katok and Newhouse. The notes are divided into two parts. The first develops the basi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1993
|
Schriftenreihe: | London Mathematical Society lecture note series
180 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Pesin theory consists of the study of the theory of non-uniformly hyperbolic diffeomorphisms. The aim of this book is to provide the reader with a straightforward account of this theory, following the approaches of Katok and Newhouse. The notes are divided into two parts. The first develops the basic theory, starting with general ergodic theory and introducing Liapunov exponents. Part Two deals with the applications of Pesin theory and contains an account of the existence (and distribution) of periodic points. It closes with a look at stable manifolds, and gives some results on absolute continuity. These lecture notes provide a unique introduction to Pesin theory and its applications. The author assumes that the reader has only a good background of undergraduate analysis and nothing further, so making the book accessible to complete newcomers to the field |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (ix, 162 pages) |
ISBN: | 9780511752537 |
DOI: | 10.1017/CBO9780511752537 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941923 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1993 |||| o||u| ||||||eng d | ||
020 | |a 9780511752537 |c Online |9 978-0-511-75253-7 | ||
024 | 7 | |a 10.1017/CBO9780511752537 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511752537 | ||
035 | |a (OCoLC)992827784 | ||
035 | |a (DE-599)BVBBV043941923 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.42 |2 20 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 810 |0 (DE-625)143257: |2 rvk | ||
100 | 1 | |a Pollicott, Mark |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lectures on ergodic theory and Pesin theory on compact manifolds |c Mark Pollicott |
246 | 1 | 3 | |a Lectures on Ergodic Theory & Pesin Theory on Compact Manifolds |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1993 | |
300 | |a 1 online resource (ix, 162 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 180 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Pesin theory consists of the study of the theory of non-uniformly hyperbolic diffeomorphisms. The aim of this book is to provide the reader with a straightforward account of this theory, following the approaches of Katok and Newhouse. The notes are divided into two parts. The first develops the basic theory, starting with general ergodic theory and introducing Liapunov exponents. Part Two deals with the applications of Pesin theory and contains an account of the existence (and distribution) of periodic points. It closes with a look at stable manifolds, and gives some results on absolute continuity. These lecture notes provide a unique introduction to Pesin theory and its applications. The author assumes that the reader has only a good background of undergraduate analysis and nothing further, so making the book accessible to complete newcomers to the field | ||
650 | 4 | |a Ergodic theory | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 0 | 7 | |a Ergodentheorie |0 (DE-588)4015246-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diffeomorphismus |0 (DE-588)4149767-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ergodentheorie |0 (DE-588)4015246-7 |D s |
689 | 0 | 1 | |a Diffeomorphismus |0 (DE-588)4149767-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-43593-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511752537 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350893 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511752537 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511752537 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884219510784 |
---|---|
any_adam_object | |
author | Pollicott, Mark |
author_facet | Pollicott, Mark |
author_role | aut |
author_sort | Pollicott, Mark |
author_variant | m p mp |
building | Verbundindex |
bvnumber | BV043941923 |
classification_rvk | SI 320 SK 810 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511752537 (OCoLC)992827784 (DE-599)BVBBV043941923 |
dewey-full | 515/.42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.42 |
dewey-search | 515/.42 |
dewey-sort | 3515 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511752537 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02952nmm a2200517zcb4500</leader><controlfield tag="001">BV043941923</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511752537</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-75253-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511752537</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511752537</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992827784</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941923</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.42</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pollicott, Mark</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on ergodic theory and Pesin theory on compact manifolds</subfield><subfield code="c">Mark Pollicott</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Lectures on Ergodic Theory & Pesin Theory on Compact Manifolds</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 162 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">180</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pesin theory consists of the study of the theory of non-uniformly hyperbolic diffeomorphisms. The aim of this book is to provide the reader with a straightforward account of this theory, following the approaches of Katok and Newhouse. The notes are divided into two parts. The first develops the basic theory, starting with general ergodic theory and introducing Liapunov exponents. Part Two deals with the applications of Pesin theory and contains an account of the existence (and distribution) of periodic points. It closes with a look at stable manifolds, and gives some results on absolute continuity. These lecture notes provide a unique introduction to Pesin theory and its applications. The author assumes that the reader has only a good background of undergraduate analysis and nothing further, so making the book accessible to complete newcomers to the field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ergodic theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ergodentheorie</subfield><subfield code="0">(DE-588)4015246-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diffeomorphismus</subfield><subfield code="0">(DE-588)4149767-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ergodentheorie</subfield><subfield code="0">(DE-588)4015246-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Diffeomorphismus</subfield><subfield code="0">(DE-588)4149767-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-43593-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511752537</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350893</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511752537</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511752537</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941923 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511752537 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350893 |
oclc_num | 992827784 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (ix, 162 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Pollicott, Mark Verfasser aut Lectures on ergodic theory and Pesin theory on compact manifolds Mark Pollicott Lectures on Ergodic Theory & Pesin Theory on Compact Manifolds Cambridge Cambridge University Press 1993 1 online resource (ix, 162 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 180 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Pesin theory consists of the study of the theory of non-uniformly hyperbolic diffeomorphisms. The aim of this book is to provide the reader with a straightforward account of this theory, following the approaches of Katok and Newhouse. The notes are divided into two parts. The first develops the basic theory, starting with general ergodic theory and introducing Liapunov exponents. Part Two deals with the applications of Pesin theory and contains an account of the existence (and distribution) of periodic points. It closes with a look at stable manifolds, and gives some results on absolute continuity. These lecture notes provide a unique introduction to Pesin theory and its applications. The author assumes that the reader has only a good background of undergraduate analysis and nothing further, so making the book accessible to complete newcomers to the field Ergodic theory Manifolds (Mathematics) Ergodentheorie (DE-588)4015246-7 gnd rswk-swf Diffeomorphismus (DE-588)4149767-3 gnd rswk-swf Ergodentheorie (DE-588)4015246-7 s Diffeomorphismus (DE-588)4149767-3 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-43593-2 https://doi.org/10.1017/CBO9780511752537 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pollicott, Mark Lectures on ergodic theory and Pesin theory on compact manifolds Ergodic theory Manifolds (Mathematics) Ergodentheorie (DE-588)4015246-7 gnd Diffeomorphismus (DE-588)4149767-3 gnd |
subject_GND | (DE-588)4015246-7 (DE-588)4149767-3 |
title | Lectures on ergodic theory and Pesin theory on compact manifolds |
title_alt | Lectures on Ergodic Theory & Pesin Theory on Compact Manifolds |
title_auth | Lectures on ergodic theory and Pesin theory on compact manifolds |
title_exact_search | Lectures on ergodic theory and Pesin theory on compact manifolds |
title_full | Lectures on ergodic theory and Pesin theory on compact manifolds Mark Pollicott |
title_fullStr | Lectures on ergodic theory and Pesin theory on compact manifolds Mark Pollicott |
title_full_unstemmed | Lectures on ergodic theory and Pesin theory on compact manifolds Mark Pollicott |
title_short | Lectures on ergodic theory and Pesin theory on compact manifolds |
title_sort | lectures on ergodic theory and pesin theory on compact manifolds |
topic | Ergodic theory Manifolds (Mathematics) Ergodentheorie (DE-588)4015246-7 gnd Diffeomorphismus (DE-588)4149767-3 gnd |
topic_facet | Ergodic theory Manifolds (Mathematics) Ergodentheorie Diffeomorphismus |
url | https://doi.org/10.1017/CBO9780511752537 |
work_keys_str_mv | AT pollicottmark lecturesonergodictheoryandpesintheoryoncompactmanifolds AT pollicottmark lecturesonergodictheorypesintheoryoncompactmanifolds |