Symmetric generation of groups: with applications to many of the sporadic finite simple groups
Some of the most beautiful mathematical objects found in the last forty years are the sporadic simple groups. But gaining familiarity with these groups presents problems for two reasons. Firstly, they were discovered in many different ways, so to understand their constructions in depth one needs to...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 111 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | Some of the most beautiful mathematical objects found in the last forty years are the sporadic simple groups. But gaining familiarity with these groups presents problems for two reasons. Firstly, they were discovered in many different ways, so to understand their constructions in depth one needs to study lots of different techniques. Secondly, since each of them is in a sense recording some exceptional symmetry in spaces of certain dimensions, they are by their nature highly complicated objects with a rich underlying combinatorial structure. Motivated by initial results which showed that the Mathieu groups can be generated by highly symmetrical sets of elements, which themselves have a natural geometric definition, the author develops from scratch the notion of symmetric generation. He exploits this technique by using it to define and construct many of the sporadic simple groups including all the Janko groups and the Higman-Sims group. For researchers and postgraduates |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiv, 317 pages) |
ISBN: | 9780511661792 |
DOI: | 10.1017/CBO9780511661792 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941910 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780511661792 |c Online |9 978-0-511-66179-2 | ||
024 | 7 | |a 10.1017/CBO9780511661792 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511661792 | ||
035 | |a (OCoLC)850743119 | ||
035 | |a (DE-599)BVBBV043941910 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512.2 |2 22 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Curtis, Robert |d 1946- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Symmetric generation of groups |b with applications to many of the sporadic finite simple groups |c Robert T. Curtis |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 online resource (xiv, 317 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 111 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Motivation -- Involutory symmetric generators -- Non-involutory symmetric generators | |
520 | |a Some of the most beautiful mathematical objects found in the last forty years are the sporadic simple groups. But gaining familiarity with these groups presents problems for two reasons. Firstly, they were discovered in many different ways, so to understand their constructions in depth one needs to study lots of different techniques. Secondly, since each of them is in a sense recording some exceptional symmetry in spaces of certain dimensions, they are by their nature highly complicated objects with a rich underlying combinatorial structure. Motivated by initial results which showed that the Mathieu groups can be generated by highly symmetrical sets of elements, which themselves have a natural geometric definition, the author develops from scratch the notion of symmetric generation. He exploits this technique by using it to define and construct many of the sporadic simple groups including all the Janko groups and the Higman-Sims group. For researchers and postgraduates | ||
650 | 4 | |a Sporadic groups (Mathematics) | |
650 | 4 | |a Finite simple groups | |
650 | 4 | |a Symmetry groups | |
650 | 0 | 7 | |a Symmetrische Gruppe |0 (DE-588)4184204-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sporadische Gruppe |0 (DE-588)4389412-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Symmetrische Gruppe |0 (DE-588)4184204-2 |D s |
689 | 0 | 1 | |a Sporadische Gruppe |0 (DE-588)4389412-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-85721-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511661792 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350880 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511661792 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511661792 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884196442112 |
---|---|
any_adam_object | |
author | Curtis, Robert 1946- |
author_facet | Curtis, Robert 1946- |
author_role | aut |
author_sort | Curtis, Robert 1946- |
author_variant | r c rc |
building | Verbundindex |
bvnumber | BV043941910 |
classification_rvk | SK 260 |
collection | ZDB-20-CBO |
contents | Motivation -- Involutory symmetric generators -- Non-involutory symmetric generators |
ctrlnum | (ZDB-20-CBO)CR9780511661792 (OCoLC)850743119 (DE-599)BVBBV043941910 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511661792 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03148nmm a2200517zcb4500</leader><controlfield tag="001">BV043941910</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511661792</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66179-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511661792</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511661792</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850743119</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941910</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Curtis, Robert</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symmetric generation of groups</subfield><subfield code="b">with applications to many of the sporadic finite simple groups</subfield><subfield code="c">Robert T. Curtis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 317 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 111</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Motivation -- Involutory symmetric generators -- Non-involutory symmetric generators</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Some of the most beautiful mathematical objects found in the last forty years are the sporadic simple groups. But gaining familiarity with these groups presents problems for two reasons. Firstly, they were discovered in many different ways, so to understand their constructions in depth one needs to study lots of different techniques. Secondly, since each of them is in a sense recording some exceptional symmetry in spaces of certain dimensions, they are by their nature highly complicated objects with a rich underlying combinatorial structure. Motivated by initial results which showed that the Mathieu groups can be generated by highly symmetrical sets of elements, which themselves have a natural geometric definition, the author develops from scratch the notion of symmetric generation. He exploits this technique by using it to define and construct many of the sporadic simple groups including all the Janko groups and the Higman-Sims group. For researchers and postgraduates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sporadic groups (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite simple groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetry groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrische Gruppe</subfield><subfield code="0">(DE-588)4184204-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sporadische Gruppe</subfield><subfield code="0">(DE-588)4389412-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Symmetrische Gruppe</subfield><subfield code="0">(DE-588)4184204-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Sporadische Gruppe</subfield><subfield code="0">(DE-588)4389412-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-85721-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511661792</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350880</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511661792</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511661792</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941910 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511661792 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350880 |
oclc_num | 850743119 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiv, 317 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Curtis, Robert 1946- Verfasser aut Symmetric generation of groups with applications to many of the sporadic finite simple groups Robert T. Curtis Cambridge Cambridge University Press 2007 1 online resource (xiv, 317 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 111 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Motivation -- Involutory symmetric generators -- Non-involutory symmetric generators Some of the most beautiful mathematical objects found in the last forty years are the sporadic simple groups. But gaining familiarity with these groups presents problems for two reasons. Firstly, they were discovered in many different ways, so to understand their constructions in depth one needs to study lots of different techniques. Secondly, since each of them is in a sense recording some exceptional symmetry in spaces of certain dimensions, they are by their nature highly complicated objects with a rich underlying combinatorial structure. Motivated by initial results which showed that the Mathieu groups can be generated by highly symmetrical sets of elements, which themselves have a natural geometric definition, the author develops from scratch the notion of symmetric generation. He exploits this technique by using it to define and construct many of the sporadic simple groups including all the Janko groups and the Higman-Sims group. For researchers and postgraduates Sporadic groups (Mathematics) Finite simple groups Symmetry groups Symmetrische Gruppe (DE-588)4184204-2 gnd rswk-swf Sporadische Gruppe (DE-588)4389412-4 gnd rswk-swf Symmetrische Gruppe (DE-588)4184204-2 s Sporadische Gruppe (DE-588)4389412-4 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-85721-5 https://doi.org/10.1017/CBO9780511661792 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Curtis, Robert 1946- Symmetric generation of groups with applications to many of the sporadic finite simple groups Motivation -- Involutory symmetric generators -- Non-involutory symmetric generators Sporadic groups (Mathematics) Finite simple groups Symmetry groups Symmetrische Gruppe (DE-588)4184204-2 gnd Sporadische Gruppe (DE-588)4389412-4 gnd |
subject_GND | (DE-588)4184204-2 (DE-588)4389412-4 |
title | Symmetric generation of groups with applications to many of the sporadic finite simple groups |
title_auth | Symmetric generation of groups with applications to many of the sporadic finite simple groups |
title_exact_search | Symmetric generation of groups with applications to many of the sporadic finite simple groups |
title_full | Symmetric generation of groups with applications to many of the sporadic finite simple groups Robert T. Curtis |
title_fullStr | Symmetric generation of groups with applications to many of the sporadic finite simple groups Robert T. Curtis |
title_full_unstemmed | Symmetric generation of groups with applications to many of the sporadic finite simple groups Robert T. Curtis |
title_short | Symmetric generation of groups |
title_sort | symmetric generation of groups with applications to many of the sporadic finite simple groups |
title_sub | with applications to many of the sporadic finite simple groups |
topic | Sporadic groups (Mathematics) Finite simple groups Symmetry groups Symmetrische Gruppe (DE-588)4184204-2 gnd Sporadische Gruppe (DE-588)4389412-4 gnd |
topic_facet | Sporadic groups (Mathematics) Finite simple groups Symmetry groups Symmetrische Gruppe Sporadische Gruppe |
url | https://doi.org/10.1017/CBO9780511661792 |
work_keys_str_mv | AT curtisrobert symmetricgenerationofgroupswithapplicationstomanyofthesporadicfinitesimplegroups |