The q-Schur algebra:
This book focuses on the representation theory of q-Schur algebras and connections with the representation theory of Hecke algebras and quantum general linear groups. The aim is to present, from a unified point of view, quantum analogues of certain results known already in the classical case. The ap...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1998
|
Schriftenreihe: | London Mathematical Society lecture note series
253 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | This book focuses on the representation theory of q-Schur algebras and connections with the representation theory of Hecke algebras and quantum general linear groups. The aim is to present, from a unified point of view, quantum analogues of certain results known already in the classical case. The approach is largely homological, based on Kempf's vanishing theorem for quantum groups and the quasi-hereditary structure of the q-Schur algebras. Beginning with an introductory chapter dealing with the relationship between the ordinary general linear groups and their quantum analogies, the text goes on to discuss the Schur Functor and the 0-Schur algebra. The next chapter considers Steinberg's tensor product and infinitesimal theory. Later sections of the book discuss tilting modules; the Ringel dual of the q-Schur algebra; Specht modules for Hecke algebras; and the global dimension of the q-Schur algebras. An appendix gives a self-contained account of the theory of quasi-hereditary algebras and their associated tilting modules. This volume will be primarily of interest to researchers in algebra and related topics in pure mathematics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (x, 179 pages) |
ISBN: | 9780511600708 |
DOI: | 10.1017/CBO9780511600708 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941904 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1998 |||| o||u| ||||||eng d | ||
020 | |a 9780511600708 |c Online |9 978-0-511-60070-8 | ||
024 | 7 | |a 10.1017/CBO9780511600708 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511600708 | ||
035 | |a (OCoLC)967601113 | ||
035 | |a (DE-599)BVBBV043941904 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.2 |2 21 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Donkin, Stephen |d 1953- |e Verfasser |4 aut | |
245 | 1 | 0 | |a The q-Schur algebra |c S. Donkin |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1998 | |
300 | |a 1 online resource (x, 179 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 253 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |g Ch. 0 |t Introduction |g Ch. 1 |t Exterior algebra |g Ch. 2 |t The Schur Functor and a Character Formula |g Ch. 3 |t Infinitesimal Theory and Steinberg's Tensor Product Theorem |g Ch. 4 |t Further Topics |g App |t Quasihereditary Algebras |
520 | |a This book focuses on the representation theory of q-Schur algebras and connections with the representation theory of Hecke algebras and quantum general linear groups. The aim is to present, from a unified point of view, quantum analogues of certain results known already in the classical case. The approach is largely homological, based on Kempf's vanishing theorem for quantum groups and the quasi-hereditary structure of the q-Schur algebras. Beginning with an introductory chapter dealing with the relationship between the ordinary general linear groups and their quantum analogies, the text goes on to discuss the Schur Functor and the 0-Schur algebra. The next chapter considers Steinberg's tensor product and infinitesimal theory. Later sections of the book discuss tilting modules; the Ringel dual of the q-Schur algebra; Specht modules for Hecke algebras; and the global dimension of the q-Schur algebras. An appendix gives a self-contained account of the theory of quasi-hereditary algebras and their associated tilting modules. This volume will be primarily of interest to researchers in algebra and related topics in pure mathematics | ||
650 | 4 | |a Representations of groups | |
650 | 4 | |a Representations of algebras | |
650 | 0 | 7 | |a Quantengruppe |0 (DE-588)4252437-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hecke-Algebra |0 (DE-588)4159341-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schur-Algebra |0 (DE-588)4180242-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Schur-Algebra |0 (DE-588)4180242-1 |D s |
689 | 0 | 1 | |a Hecke-Algebra |0 (DE-588)4159341-8 |D s |
689 | 0 | 2 | |a Quantengruppe |0 (DE-588)4252437-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-64558-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511600708 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350874 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511600708 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511600708 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884187004928 |
---|---|
any_adam_object | |
author | Donkin, Stephen 1953- |
author_facet | Donkin, Stephen 1953- |
author_role | aut |
author_sort | Donkin, Stephen 1953- |
author_variant | s d sd |
building | Verbundindex |
bvnumber | BV043941904 |
classification_rvk | SI 320 SK 340 |
collection | ZDB-20-CBO |
contents | Introduction Exterior algebra The Schur Functor and a Character Formula Infinitesimal Theory and Steinberg's Tensor Product Theorem Further Topics Quasihereditary Algebras |
ctrlnum | (ZDB-20-CBO)CR9780511600708 (OCoLC)967601113 (DE-599)BVBBV043941904 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511600708 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03465nmm a2200541zcb4500</leader><controlfield tag="001">BV043941904</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511600708</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-60070-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511600708</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511600708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967601113</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941904</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Donkin, Stephen</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The q-Schur algebra</subfield><subfield code="c">S. Donkin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 179 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">253</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="g">Ch. 0</subfield><subfield code="t">Introduction</subfield><subfield code="g">Ch. 1</subfield><subfield code="t">Exterior algebra</subfield><subfield code="g">Ch. 2</subfield><subfield code="t">The Schur Functor and a Character Formula</subfield><subfield code="g">Ch. 3</subfield><subfield code="t">Infinitesimal Theory and Steinberg's Tensor Product Theorem</subfield><subfield code="g">Ch. 4</subfield><subfield code="t">Further Topics</subfield><subfield code="g">App</subfield><subfield code="t">Quasihereditary Algebras</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book focuses on the representation theory of q-Schur algebras and connections with the representation theory of Hecke algebras and quantum general linear groups. The aim is to present, from a unified point of view, quantum analogues of certain results known already in the classical case. The approach is largely homological, based on Kempf's vanishing theorem for quantum groups and the quasi-hereditary structure of the q-Schur algebras. Beginning with an introductory chapter dealing with the relationship between the ordinary general linear groups and their quantum analogies, the text goes on to discuss the Schur Functor and the 0-Schur algebra. The next chapter considers Steinberg's tensor product and infinitesimal theory. Later sections of the book discuss tilting modules; the Ringel dual of the q-Schur algebra; Specht modules for Hecke algebras; and the global dimension of the q-Schur algebras. An appendix gives a self-contained account of the theory of quasi-hereditary algebras and their associated tilting modules. This volume will be primarily of interest to researchers in algebra and related topics in pure mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of algebras</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hecke-Algebra</subfield><subfield code="0">(DE-588)4159341-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schur-Algebra</subfield><subfield code="0">(DE-588)4180242-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Schur-Algebra</subfield><subfield code="0">(DE-588)4180242-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hecke-Algebra</subfield><subfield code="0">(DE-588)4159341-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-64558-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511600708</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350874</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511600708</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511600708</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941904 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511600708 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350874 |
oclc_num | 967601113 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (x, 179 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Donkin, Stephen 1953- Verfasser aut The q-Schur algebra S. Donkin Cambridge Cambridge University Press 1998 1 online resource (x, 179 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 253 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Ch. 0 Introduction Ch. 1 Exterior algebra Ch. 2 The Schur Functor and a Character Formula Ch. 3 Infinitesimal Theory and Steinberg's Tensor Product Theorem Ch. 4 Further Topics App Quasihereditary Algebras This book focuses on the representation theory of q-Schur algebras and connections with the representation theory of Hecke algebras and quantum general linear groups. The aim is to present, from a unified point of view, quantum analogues of certain results known already in the classical case. The approach is largely homological, based on Kempf's vanishing theorem for quantum groups and the quasi-hereditary structure of the q-Schur algebras. Beginning with an introductory chapter dealing with the relationship between the ordinary general linear groups and their quantum analogies, the text goes on to discuss the Schur Functor and the 0-Schur algebra. The next chapter considers Steinberg's tensor product and infinitesimal theory. Later sections of the book discuss tilting modules; the Ringel dual of the q-Schur algebra; Specht modules for Hecke algebras; and the global dimension of the q-Schur algebras. An appendix gives a self-contained account of the theory of quasi-hereditary algebras and their associated tilting modules. This volume will be primarily of interest to researchers in algebra and related topics in pure mathematics Representations of groups Representations of algebras Quantengruppe (DE-588)4252437-4 gnd rswk-swf Hecke-Algebra (DE-588)4159341-8 gnd rswk-swf Schur-Algebra (DE-588)4180242-1 gnd rswk-swf Schur-Algebra (DE-588)4180242-1 s Hecke-Algebra (DE-588)4159341-8 s Quantengruppe (DE-588)4252437-4 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-64558-4 https://doi.org/10.1017/CBO9780511600708 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Donkin, Stephen 1953- The q-Schur algebra Introduction Exterior algebra The Schur Functor and a Character Formula Infinitesimal Theory and Steinberg's Tensor Product Theorem Further Topics Quasihereditary Algebras Representations of groups Representations of algebras Quantengruppe (DE-588)4252437-4 gnd Hecke-Algebra (DE-588)4159341-8 gnd Schur-Algebra (DE-588)4180242-1 gnd |
subject_GND | (DE-588)4252437-4 (DE-588)4159341-8 (DE-588)4180242-1 |
title | The q-Schur algebra |
title_alt | Introduction Exterior algebra The Schur Functor and a Character Formula Infinitesimal Theory and Steinberg's Tensor Product Theorem Further Topics Quasihereditary Algebras |
title_auth | The q-Schur algebra |
title_exact_search | The q-Schur algebra |
title_full | The q-Schur algebra S. Donkin |
title_fullStr | The q-Schur algebra S. Donkin |
title_full_unstemmed | The q-Schur algebra S. Donkin |
title_short | The q-Schur algebra |
title_sort | the q schur algebra |
topic | Representations of groups Representations of algebras Quantengruppe (DE-588)4252437-4 gnd Hecke-Algebra (DE-588)4159341-8 gnd Schur-Algebra (DE-588)4180242-1 gnd |
topic_facet | Representations of groups Representations of algebras Quantengruppe Hecke-Algebra Schur-Algebra |
url | https://doi.org/10.1017/CBO9780511600708 |
work_keys_str_mv | AT donkinstephen theqschuralgebra |