Maximum and minimum principles: a unified approach, with applications
In many problems of applied mathematics, science, engineering or economics, an energy expenditure or its analogue can be approximated by upper and lower bounds. This book provides a unified account of the theory required to establish such bounds, by expressing the governing conditions of the problem...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1987
|
Schriftenreihe: | Cambridge texts in applied mathematics
1 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | In many problems of applied mathematics, science, engineering or economics, an energy expenditure or its analogue can be approximated by upper and lower bounds. This book provides a unified account of the theory required to establish such bounds, by expressing the governing conditions of the problem, and the bounds, in terms of a saddle functional and its gradients. There are several features, including a chapter on the Legendre dual transformation and some of its singularities. Many substantial examples and exercises are included, especially from the mechanics of fluids, elastic and plastic solids and from optimisation theory. The saddle functional viewpoint gives the book a wide scope. The treatment is straightforward, the only prerequisite being a basic knowledge of the calculus of variations. Part of the book is based on final-year undergraduate courses. This is developed into an account which will interest a wide range of students and professionals in applied mathematics, engineering, physics and operations research |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvi, 468 pages) |
ISBN: | 9780511569234 |
DOI: | 10.1017/CBO9780511569234 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941901 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1987 |||| o||u| ||||||eng d | ||
020 | |a 9780511569234 |c Online |9 978-0-511-56923-4 | ||
024 | 7 | |a 10.1017/CBO9780511569234 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511569234 | ||
035 | |a (OCoLC)890760444 | ||
035 | |a (DE-599)BVBBV043941901 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 511/.66 |2 19eng | |
084 | |a SK 490 |0 (DE-625)143242: |2 rvk | ||
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
100 | 1 | |a Sewell, M. J. |d 1934- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Maximum and minimum principles |b a unified approach, with applications |c M.J. Sewell |
246 | 1 | 3 | |a Maximum & Minimum Principles |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1987 | |
300 | |a 1 online resource (xvi, 468 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge texts in applied mathematics |v 1 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Saddle function problems -- Duality and legendre transformations -- Upper and lower bounds via saddle functionals -- Extensions of the general approach -- Mechanics of solids and fluids | |
520 | |a In many problems of applied mathematics, science, engineering or economics, an energy expenditure or its analogue can be approximated by upper and lower bounds. This book provides a unified account of the theory required to establish such bounds, by expressing the governing conditions of the problem, and the bounds, in terms of a saddle functional and its gradients. There are several features, including a chapter on the Legendre dual transformation and some of its singularities. Many substantial examples and exercises are included, especially from the mechanics of fluids, elastic and plastic solids and from optimisation theory. The saddle functional viewpoint gives the book a wide scope. The treatment is straightforward, the only prerequisite being a basic knowledge of the calculus of variations. Part of the book is based on final-year undergraduate courses. This is developed into an account which will interest a wide range of students and professionals in applied mathematics, engineering, physics and operations research | ||
650 | 4 | |a Maxima and minima | |
650 | 0 | 7 | |a Minimax-Theorem |0 (DE-588)4135131-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Minimum-Maximum-Prinzip |0 (DE-588)4170060-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Minimum-Maximum-Prinzip |0 (DE-588)4170060-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Minimax-Theorem |0 (DE-588)4135131-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-33244-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-34876-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511569234 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350871 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511569234 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511569234 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884175470592 |
---|---|
any_adam_object | |
author | Sewell, M. J. 1934- |
author_facet | Sewell, M. J. 1934- |
author_role | aut |
author_sort | Sewell, M. J. 1934- |
author_variant | m j s mj mjs |
building | Verbundindex |
bvnumber | BV043941901 |
classification_rvk | SK 490 SK 870 |
collection | ZDB-20-CBO |
contents | Saddle function problems -- Duality and legendre transformations -- Upper and lower bounds via saddle functionals -- Extensions of the general approach -- Mechanics of solids and fluids |
ctrlnum | (ZDB-20-CBO)CR9780511569234 (OCoLC)890760444 (DE-599)BVBBV043941901 |
dewey-full | 511/.66 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.66 |
dewey-search | 511/.66 |
dewey-sort | 3511 266 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511569234 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03670nmm a2200601zcb4500</leader><controlfield tag="001">BV043941901</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511569234</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56923-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511569234</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511569234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)890760444</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941901</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.66</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 490</subfield><subfield code="0">(DE-625)143242:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sewell, M. J.</subfield><subfield code="d">1934-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maximum and minimum principles</subfield><subfield code="b">a unified approach, with applications</subfield><subfield code="c">M.J. Sewell</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Maximum & Minimum Principles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 468 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge texts in applied mathematics</subfield><subfield code="v">1</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Saddle function problems -- Duality and legendre transformations -- Upper and lower bounds via saddle functionals -- Extensions of the general approach -- Mechanics of solids and fluids</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In many problems of applied mathematics, science, engineering or economics, an energy expenditure or its analogue can be approximated by upper and lower bounds. This book provides a unified account of the theory required to establish such bounds, by expressing the governing conditions of the problem, and the bounds, in terms of a saddle functional and its gradients. There are several features, including a chapter on the Legendre dual transformation and some of its singularities. Many substantial examples and exercises are included, especially from the mechanics of fluids, elastic and plastic solids and from optimisation theory. The saddle functional viewpoint gives the book a wide scope. The treatment is straightforward, the only prerequisite being a basic knowledge of the calculus of variations. Part of the book is based on final-year undergraduate courses. This is developed into an account which will interest a wide range of students and professionals in applied mathematics, engineering, physics and operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxima and minima</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Minimax-Theorem</subfield><subfield code="0">(DE-588)4135131-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Minimum-Maximum-Prinzip</subfield><subfield code="0">(DE-588)4170060-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Minimum-Maximum-Prinzip</subfield><subfield code="0">(DE-588)4170060-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Minimax-Theorem</subfield><subfield code="0">(DE-588)4135131-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-33244-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-34876-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511569234</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350871</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511569234</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511569234</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941901 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511569234 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350871 |
oclc_num | 890760444 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvi, 468 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge texts in applied mathematics |
spelling | Sewell, M. J. 1934- Verfasser aut Maximum and minimum principles a unified approach, with applications M.J. Sewell Maximum & Minimum Principles Cambridge Cambridge University Press 1987 1 online resource (xvi, 468 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge texts in applied mathematics 1 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Saddle function problems -- Duality and legendre transformations -- Upper and lower bounds via saddle functionals -- Extensions of the general approach -- Mechanics of solids and fluids In many problems of applied mathematics, science, engineering or economics, an energy expenditure or its analogue can be approximated by upper and lower bounds. This book provides a unified account of the theory required to establish such bounds, by expressing the governing conditions of the problem, and the bounds, in terms of a saddle functional and its gradients. There are several features, including a chapter on the Legendre dual transformation and some of its singularities. Many substantial examples and exercises are included, especially from the mechanics of fluids, elastic and plastic solids and from optimisation theory. The saddle functional viewpoint gives the book a wide scope. The treatment is straightforward, the only prerequisite being a basic knowledge of the calculus of variations. Part of the book is based on final-year undergraduate courses. This is developed into an account which will interest a wide range of students and professionals in applied mathematics, engineering, physics and operations research Maxima and minima Minimax-Theorem (DE-588)4135131-9 gnd rswk-swf Analysis (DE-588)4001865-9 gnd rswk-swf Minimum-Maximum-Prinzip (DE-588)4170060-0 gnd rswk-swf Minimum-Maximum-Prinzip (DE-588)4170060-0 s 1\p DE-604 Analysis (DE-588)4001865-9 s 2\p DE-604 Minimax-Theorem (DE-588)4135131-9 s 3\p DE-604 Erscheint auch als Druckausgabe 978-0-521-33244-6 Erscheint auch als Druckausgabe 978-0-521-34876-8 https://doi.org/10.1017/CBO9780511569234 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sewell, M. J. 1934- Maximum and minimum principles a unified approach, with applications Saddle function problems -- Duality and legendre transformations -- Upper and lower bounds via saddle functionals -- Extensions of the general approach -- Mechanics of solids and fluids Maxima and minima Minimax-Theorem (DE-588)4135131-9 gnd Analysis (DE-588)4001865-9 gnd Minimum-Maximum-Prinzip (DE-588)4170060-0 gnd |
subject_GND | (DE-588)4135131-9 (DE-588)4001865-9 (DE-588)4170060-0 |
title | Maximum and minimum principles a unified approach, with applications |
title_alt | Maximum & Minimum Principles |
title_auth | Maximum and minimum principles a unified approach, with applications |
title_exact_search | Maximum and minimum principles a unified approach, with applications |
title_full | Maximum and minimum principles a unified approach, with applications M.J. Sewell |
title_fullStr | Maximum and minimum principles a unified approach, with applications M.J. Sewell |
title_full_unstemmed | Maximum and minimum principles a unified approach, with applications M.J. Sewell |
title_short | Maximum and minimum principles |
title_sort | maximum and minimum principles a unified approach with applications |
title_sub | a unified approach, with applications |
topic | Maxima and minima Minimax-Theorem (DE-588)4135131-9 gnd Analysis (DE-588)4001865-9 gnd Minimum-Maximum-Prinzip (DE-588)4170060-0 gnd |
topic_facet | Maxima and minima Minimax-Theorem Analysis Minimum-Maximum-Prinzip |
url | https://doi.org/10.1017/CBO9780511569234 |
work_keys_str_mv | AT sewellmj maximumandminimumprinciplesaunifiedapproachwithapplications AT sewellmj maximumminimumprinciples |