Lie's structural approach to PDE systems:
This book provides a lucid and comprehensive introduction to the differential geometric study of partial differential equations. It was the first book to present substantial results on local solvability of general and, in particular, nonlinear PDE systems without using power series techniques. The b...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2000
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 80 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | This book provides a lucid and comprehensive introduction to the differential geometric study of partial differential equations. It was the first book to present substantial results on local solvability of general and, in particular, nonlinear PDE systems without using power series techniques. The book describes a general approach to systems of partial differential equations based on ideas developed by Lie, Cartan and Vessiot. The most basic question is that of local solvability, but the methods used also yield classifications of various families of PDE systems. The central idea is the exploitation of singular vector field systems and their first integrals. These considerations naturally lead to local Lie groups, Lie pseudogroups and the equivalence problem, all of which are covered in detail. This book will be a valuable resource for graduate students and researchers in partial differential equations, Lie groups and related fields |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xv, 572 pages) |
ISBN: | 9780511569456 |
DOI: | 10.1017/CBO9780511569456 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941889 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2000 |||| o||u| ||||||eng d | ||
020 | |a 9780511569456 |c Online |9 978-0-511-56945-6 | ||
024 | 7 | |a 10.1017/CBO9780511569456 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511569456 | ||
035 | |a (OCoLC)855562764 | ||
035 | |a (DE-599)BVBBV043941889 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.353 |2 21 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
100 | 1 | |a Stormark, Olle |d 1945- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lie's structural approach to PDE systems |c Olle Stormark |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2000 | |
300 | |a 1 online resource (xv, 572 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 80 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book provides a lucid and comprehensive introduction to the differential geometric study of partial differential equations. It was the first book to present substantial results on local solvability of general and, in particular, nonlinear PDE systems without using power series techniques. The book describes a general approach to systems of partial differential equations based on ideas developed by Lie, Cartan and Vessiot. The most basic question is that of local solvability, but the methods used also yield classifications of various families of PDE systems. The central idea is the exploitation of singular vector field systems and their first integrals. These considerations naturally lead to local Lie groups, Lie pseudogroups and the equivalence problem, all of which are covered in detail. This book will be a valuable resource for graduate students and researchers in partial differential equations, Lie groups and related fields | ||
650 | 4 | |a Differential equations, Partial / Numerical solutions | |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-78088-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-40332-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511569456 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350859 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511569456 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511569456 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884148207616 |
---|---|
any_adam_object | |
author | Stormark, Olle 1945- |
author_facet | Stormark, Olle 1945- |
author_role | aut |
author_sort | Stormark, Olle 1945- |
author_variant | o s os |
building | Verbundindex |
bvnumber | BV043941889 |
classification_rvk | SK 340 SK 540 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511569456 (OCoLC)855562764 (DE-599)BVBBV043941889 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511569456 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03029nmm a2200505zcb4500</leader><controlfield tag="001">BV043941889</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511569456</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56945-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511569456</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511569456</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)855562764</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941889</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stormark, Olle</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie's structural approach to PDE systems</subfield><subfield code="c">Olle Stormark</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 572 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 80</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides a lucid and comprehensive introduction to the differential geometric study of partial differential equations. It was the first book to present substantial results on local solvability of general and, in particular, nonlinear PDE systems without using power series techniques. The book describes a general approach to systems of partial differential equations based on ideas developed by Lie, Cartan and Vessiot. The most basic question is that of local solvability, but the methods used also yield classifications of various families of PDE systems. The central idea is the exploitation of singular vector field systems and their first integrals. These considerations naturally lead to local Lie groups, Lie pseudogroups and the equivalence problem, all of which are covered in detail. This book will be a valuable resource for graduate students and researchers in partial differential equations, Lie groups and related fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial / Numerical solutions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-78088-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-40332-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511569456</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350859</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511569456</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511569456</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941889 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511569456 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350859 |
oclc_num | 855562764 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xv, 572 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Stormark, Olle 1945- Verfasser aut Lie's structural approach to PDE systems Olle Stormark Cambridge Cambridge University Press 2000 1 online resource (xv, 572 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 80 Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book provides a lucid and comprehensive introduction to the differential geometric study of partial differential equations. It was the first book to present substantial results on local solvability of general and, in particular, nonlinear PDE systems without using power series techniques. The book describes a general approach to systems of partial differential equations based on ideas developed by Lie, Cartan and Vessiot. The most basic question is that of local solvability, but the methods used also yield classifications of various families of PDE systems. The central idea is the exploitation of singular vector field systems and their first integrals. These considerations naturally lead to local Lie groups, Lie pseudogroups and the equivalence problem, all of which are covered in detail. This book will be a valuable resource for graduate students and researchers in partial differential equations, Lie groups and related fields Differential equations, Partial / Numerical solutions Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s Lie-Gruppe (DE-588)4035695-4 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-78088-9 Erscheint auch als Druckausgabe 978-1-107-40332-1 https://doi.org/10.1017/CBO9780511569456 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Stormark, Olle 1945- Lie's structural approach to PDE systems Differential equations, Partial / Numerical solutions Lie-Gruppe (DE-588)4035695-4 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4035695-4 (DE-588)4044779-0 |
title | Lie's structural approach to PDE systems |
title_auth | Lie's structural approach to PDE systems |
title_exact_search | Lie's structural approach to PDE systems |
title_full | Lie's structural approach to PDE systems Olle Stormark |
title_fullStr | Lie's structural approach to PDE systems Olle Stormark |
title_full_unstemmed | Lie's structural approach to PDE systems Olle Stormark |
title_short | Lie's structural approach to PDE systems |
title_sort | lie s structural approach to pde systems |
topic | Differential equations, Partial / Numerical solutions Lie-Gruppe (DE-588)4035695-4 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Differential equations, Partial / Numerical solutions Lie-Gruppe Partielle Differentialgleichung |
url | https://doi.org/10.1017/CBO9780511569456 |
work_keys_str_mv | AT stormarkolle liesstructuralapproachtopdesystems |