Singularities of plane curves:
This book provides a comprehensive and self-contained exposition of the algebro-geometric theory of singularities of plane curves, covering both its classical and its modern aspects. The book gives a unified treatment, with complete proofs, presenting modern results which have only ever appeared in...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2000
|
Schriftenreihe: | London Mathematical Society lecture note series
276 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book provides a comprehensive and self-contained exposition of the algebro-geometric theory of singularities of plane curves, covering both its classical and its modern aspects. The book gives a unified treatment, with complete proofs, presenting modern results which have only ever appeared in research papers. It updates and correctly proves a number of important classical results for which there was formerly no suitable reference, and includes new, previously unpublished results as well as applications to algebra and algebraic geometry. This book will be useful as a reference text for researchers in the field. It is also suitable as a textbook for postgraduate courses on singularities, or as a supplementary text for courses on algebraic geometry (algebraic curves) or commutative algebra (valuations, complete ideals) |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xv, 345 pages) |
ISBN: | 9780511569326 |
DOI: | 10.1017/CBO9780511569326 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941888 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2000 |||| o||u| ||||||eng d | ||
020 | |a 9780511569326 |c Online |9 978-0-511-56932-6 | ||
024 | 7 | |a 10.1017/CBO9780511569326 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511569326 | ||
035 | |a (OCoLC)847017844 | ||
035 | |a (DE-599)BVBBV043941888 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516.3/5 |2 21 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Casas-Alvero, E. |d 1948- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Singularities of plane curves |c Eduardo Casas-Alvero |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2000 | |
300 | |a 1 online resource (xv, 345 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 276 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |t Projective spaces |t Power series |t Surfaces, local coordinates |t Morphisms |t Local rings |t Tangent and cotangent spaces |t Curves |t Germs of curves |t Multiplicity and tangent cone |t Smooth germs |t Examples of singular germs |t Newton--Puiseux algorithm |t Newton polygon |t Fractionary power series |t Search for y-roots of f(x, y) |t The Newton-Puiseux algorithm |t Puiseux theorem |t Separation of y-roots |t The case of convergent series |t Algebraic properties of C{x, y} |t First local properties of plane curves |t The branches of a germ |t The Puiseux series of a germ |t Points on curves around O |t Local rings of germs |t Parameterizing branches |t Intersection multiplicity |t Pencils and linear systems |t Infinitely near points |t Blowing up |t Transforming curves and germs |t Infinitely near points |t Enriques' definition of infinitely near points |t Proximity |t Free and satellite points |t Resolution of singularities |t Equisingularity |t Enriques diagrams |t The ring in the first neighbourhood |t The rings in the successive neighbourhoods |t Artin theorem for plane curves |t Virtual multiplicities |t Curves through a weighted cluster |t When virtual multiplicities are effective |t Blowing up all points in a cluster |t Exceptional divisors and dual graphs |t The totla transform of a curve |t Unloading |t The number of conditions |t Adjoint germs and curves |t Noether's Af + B[phi] theorem |t Analysis of branches |t Characteristic exponents |t The first characteristic exponent |
520 | |a This book provides a comprehensive and self-contained exposition of the algebro-geometric theory of singularities of plane curves, covering both its classical and its modern aspects. The book gives a unified treatment, with complete proofs, presenting modern results which have only ever appeared in research papers. It updates and correctly proves a number of important classical results for which there was formerly no suitable reference, and includes new, previously unpublished results as well as applications to algebra and algebraic geometry. This book will be useful as a reference text for researchers in the field. It is also suitable as a textbook for postgraduate courses on singularities, or as a supplementary text for courses on algebraic geometry (algebraic curves) or commutative algebra (valuations, complete ideals) | ||
650 | 4 | |a Curves, Plane | |
650 | 4 | |a Singularities (Mathematics) | |
650 | 0 | 7 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ebene Kurve |0 (DE-588)4150970-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ebene Kurve |0 (DE-588)4150970-5 |D s |
689 | 0 | 1 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-78959-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511569326 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350858 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511569326 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511569326 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884160790528 |
---|---|
any_adam_object | |
author | Casas-Alvero, E. 1948- |
author_facet | Casas-Alvero, E. 1948- |
author_role | aut |
author_sort | Casas-Alvero, E. 1948- |
author_variant | e c a eca |
building | Verbundindex |
bvnumber | BV043941888 |
classification_rvk | SI 320 SK 240 |
collection | ZDB-20-CBO |
contents | Projective spaces Power series Surfaces, local coordinates Morphisms Local rings Tangent and cotangent spaces Curves Germs of curves Multiplicity and tangent cone Smooth germs Examples of singular germs Newton--Puiseux algorithm Newton polygon Fractionary power series Search for y-roots of f(x, y) The Newton-Puiseux algorithm Puiseux theorem Separation of y-roots The case of convergent series Algebraic properties of C{x, y} First local properties of plane curves The branches of a germ The Puiseux series of a germ Points on curves around O Local rings of germs Parameterizing branches Intersection multiplicity Pencils and linear systems Infinitely near points Blowing up Transforming curves and germs Enriques' definition of infinitely near points Proximity Free and satellite points Resolution of singularities Equisingularity Enriques diagrams The ring in the first neighbourhood The rings in the successive neighbourhoods Artin theorem for plane curves Virtual multiplicities Curves through a weighted cluster When virtual multiplicities are effective Blowing up all points in a cluster Exceptional divisors and dual graphs The totla transform of a curve Unloading The number of conditions Adjoint germs and curves Noether's Af + B[phi] theorem Analysis of branches Characteristic exponents The first characteristic exponent |
ctrlnum | (ZDB-20-CBO)CR9780511569326 (OCoLC)847017844 (DE-599)BVBBV043941888 |
dewey-full | 516.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/5 |
dewey-search | 516.3/5 |
dewey-sort | 3516.3 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511569326 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04259nmm a2200517zcb4500</leader><controlfield tag="001">BV043941888</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511569326</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56932-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511569326</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511569326</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)847017844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941888</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/5</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Casas-Alvero, E.</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Singularities of plane curves</subfield><subfield code="c">Eduardo Casas-Alvero</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 345 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">276</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Projective spaces</subfield><subfield code="t">Power series</subfield><subfield code="t">Surfaces, local coordinates</subfield><subfield code="t">Morphisms</subfield><subfield code="t">Local rings</subfield><subfield code="t">Tangent and cotangent spaces</subfield><subfield code="t">Curves</subfield><subfield code="t">Germs of curves</subfield><subfield code="t">Multiplicity and tangent cone</subfield><subfield code="t">Smooth germs</subfield><subfield code="t">Examples of singular germs</subfield><subfield code="t">Newton--Puiseux algorithm</subfield><subfield code="t">Newton polygon</subfield><subfield code="t">Fractionary power series</subfield><subfield code="t">Search for y-roots of f(x, y)</subfield><subfield code="t">The Newton-Puiseux algorithm</subfield><subfield code="t">Puiseux theorem</subfield><subfield code="t">Separation of y-roots</subfield><subfield code="t">The case of convergent series</subfield><subfield code="t">Algebraic properties of C{x, y}</subfield><subfield code="t">First local properties of plane curves</subfield><subfield code="t">The branches of a germ</subfield><subfield code="t">The Puiseux series of a germ</subfield><subfield code="t">Points on curves around O</subfield><subfield code="t">Local rings of germs</subfield><subfield code="t">Parameterizing branches</subfield><subfield code="t">Intersection multiplicity</subfield><subfield code="t">Pencils and linear systems</subfield><subfield code="t">Infinitely near points</subfield><subfield code="t">Blowing up</subfield><subfield code="t">Transforming curves and germs</subfield><subfield code="t">Infinitely near points</subfield><subfield code="t">Enriques' definition of infinitely near points</subfield><subfield code="t">Proximity</subfield><subfield code="t">Free and satellite points</subfield><subfield code="t">Resolution of singularities</subfield><subfield code="t">Equisingularity</subfield><subfield code="t">Enriques diagrams</subfield><subfield code="t">The ring in the first neighbourhood</subfield><subfield code="t">The rings in the successive neighbourhoods</subfield><subfield code="t">Artin theorem for plane curves</subfield><subfield code="t">Virtual multiplicities</subfield><subfield code="t">Curves through a weighted cluster</subfield><subfield code="t">When virtual multiplicities are effective</subfield><subfield code="t">Blowing up all points in a cluster</subfield><subfield code="t">Exceptional divisors and dual graphs</subfield><subfield code="t">The totla transform of a curve</subfield><subfield code="t">Unloading</subfield><subfield code="t">The number of conditions</subfield><subfield code="t">Adjoint germs and curves</subfield><subfield code="t">Noether's Af + B[phi] theorem</subfield><subfield code="t">Analysis of branches</subfield><subfield code="t">Characteristic exponents</subfield><subfield code="t">The first characteristic exponent</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides a comprehensive and self-contained exposition of the algebro-geometric theory of singularities of plane curves, covering both its classical and its modern aspects. The book gives a unified treatment, with complete proofs, presenting modern results which have only ever appeared in research papers. It updates and correctly proves a number of important classical results for which there was formerly no suitable reference, and includes new, previously unpublished results as well as applications to algebra and algebraic geometry. This book will be useful as a reference text for researchers in the field. It is also suitable as a textbook for postgraduate courses on singularities, or as a supplementary text for courses on algebraic geometry (algebraic curves) or commutative algebra (valuations, complete ideals)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curves, Plane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singularities (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ebene Kurve</subfield><subfield code="0">(DE-588)4150970-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ebene Kurve</subfield><subfield code="0">(DE-588)4150970-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-78959-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511569326</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350858</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511569326</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511569326</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941888 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511569326 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350858 |
oclc_num | 847017844 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xv, 345 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Casas-Alvero, E. 1948- Verfasser aut Singularities of plane curves Eduardo Casas-Alvero Cambridge Cambridge University Press 2000 1 online resource (xv, 345 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 276 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Projective spaces Power series Surfaces, local coordinates Morphisms Local rings Tangent and cotangent spaces Curves Germs of curves Multiplicity and tangent cone Smooth germs Examples of singular germs Newton--Puiseux algorithm Newton polygon Fractionary power series Search for y-roots of f(x, y) The Newton-Puiseux algorithm Puiseux theorem Separation of y-roots The case of convergent series Algebraic properties of C{x, y} First local properties of plane curves The branches of a germ The Puiseux series of a germ Points on curves around O Local rings of germs Parameterizing branches Intersection multiplicity Pencils and linear systems Infinitely near points Blowing up Transforming curves and germs Infinitely near points Enriques' definition of infinitely near points Proximity Free and satellite points Resolution of singularities Equisingularity Enriques diagrams The ring in the first neighbourhood The rings in the successive neighbourhoods Artin theorem for plane curves Virtual multiplicities Curves through a weighted cluster When virtual multiplicities are effective Blowing up all points in a cluster Exceptional divisors and dual graphs The totla transform of a curve Unloading The number of conditions Adjoint germs and curves Noether's Af + B[phi] theorem Analysis of branches Characteristic exponents The first characteristic exponent This book provides a comprehensive and self-contained exposition of the algebro-geometric theory of singularities of plane curves, covering both its classical and its modern aspects. The book gives a unified treatment, with complete proofs, presenting modern results which have only ever appeared in research papers. It updates and correctly proves a number of important classical results for which there was formerly no suitable reference, and includes new, previously unpublished results as well as applications to algebra and algebraic geometry. This book will be useful as a reference text for researchers in the field. It is also suitable as a textbook for postgraduate courses on singularities, or as a supplementary text for courses on algebraic geometry (algebraic curves) or commutative algebra (valuations, complete ideals) Curves, Plane Singularities (Mathematics) Singularität Mathematik (DE-588)4077459-4 gnd rswk-swf Ebene Kurve (DE-588)4150970-5 gnd rswk-swf Ebene Kurve (DE-588)4150970-5 s Singularität Mathematik (DE-588)4077459-4 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-78959-2 https://doi.org/10.1017/CBO9780511569326 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Casas-Alvero, E. 1948- Singularities of plane curves Projective spaces Power series Surfaces, local coordinates Morphisms Local rings Tangent and cotangent spaces Curves Germs of curves Multiplicity and tangent cone Smooth germs Examples of singular germs Newton--Puiseux algorithm Newton polygon Fractionary power series Search for y-roots of f(x, y) The Newton-Puiseux algorithm Puiseux theorem Separation of y-roots The case of convergent series Algebraic properties of C{x, y} First local properties of plane curves The branches of a germ The Puiseux series of a germ Points on curves around O Local rings of germs Parameterizing branches Intersection multiplicity Pencils and linear systems Infinitely near points Blowing up Transforming curves and germs Enriques' definition of infinitely near points Proximity Free and satellite points Resolution of singularities Equisingularity Enriques diagrams The ring in the first neighbourhood The rings in the successive neighbourhoods Artin theorem for plane curves Virtual multiplicities Curves through a weighted cluster When virtual multiplicities are effective Blowing up all points in a cluster Exceptional divisors and dual graphs The totla transform of a curve Unloading The number of conditions Adjoint germs and curves Noether's Af + B[phi] theorem Analysis of branches Characteristic exponents The first characteristic exponent Curves, Plane Singularities (Mathematics) Singularität Mathematik (DE-588)4077459-4 gnd Ebene Kurve (DE-588)4150970-5 gnd |
subject_GND | (DE-588)4077459-4 (DE-588)4150970-5 |
title | Singularities of plane curves |
title_alt | Projective spaces Power series Surfaces, local coordinates Morphisms Local rings Tangent and cotangent spaces Curves Germs of curves Multiplicity and tangent cone Smooth germs Examples of singular germs Newton--Puiseux algorithm Newton polygon Fractionary power series Search for y-roots of f(x, y) The Newton-Puiseux algorithm Puiseux theorem Separation of y-roots The case of convergent series Algebraic properties of C{x, y} First local properties of plane curves The branches of a germ The Puiseux series of a germ Points on curves around O Local rings of germs Parameterizing branches Intersection multiplicity Pencils and linear systems Infinitely near points Blowing up Transforming curves and germs Enriques' definition of infinitely near points Proximity Free and satellite points Resolution of singularities Equisingularity Enriques diagrams The ring in the first neighbourhood The rings in the successive neighbourhoods Artin theorem for plane curves Virtual multiplicities Curves through a weighted cluster When virtual multiplicities are effective Blowing up all points in a cluster Exceptional divisors and dual graphs The totla transform of a curve Unloading The number of conditions Adjoint germs and curves Noether's Af + B[phi] theorem Analysis of branches Characteristic exponents The first characteristic exponent |
title_auth | Singularities of plane curves |
title_exact_search | Singularities of plane curves |
title_full | Singularities of plane curves Eduardo Casas-Alvero |
title_fullStr | Singularities of plane curves Eduardo Casas-Alvero |
title_full_unstemmed | Singularities of plane curves Eduardo Casas-Alvero |
title_short | Singularities of plane curves |
title_sort | singularities of plane curves |
topic | Curves, Plane Singularities (Mathematics) Singularität Mathematik (DE-588)4077459-4 gnd Ebene Kurve (DE-588)4150970-5 gnd |
topic_facet | Curves, Plane Singularities (Mathematics) Singularität Mathematik Ebene Kurve |
url | https://doi.org/10.1017/CBO9780511569326 |
work_keys_str_mv | AT casasalveroe singularitiesofplanecurves |