Knots and Feynman diagrams:
This book provides an accessible and up-to-date introduction to how knot theory and Feynman diagrams can be used to illuminate problems in quantum field theory. Beginning with a summary of key ideas from perturbative quantum field theory and an introduction to the Hopf algebra structure of renormali...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2000
|
Schriftenreihe: | Cambridge lecture notes in physics
13 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | This book provides an accessible and up-to-date introduction to how knot theory and Feynman diagrams can be used to illuminate problems in quantum field theory. Beginning with a summary of key ideas from perturbative quantum field theory and an introduction to the Hopf algebra structure of renormalization, early chapters discuss the rationality of ladder diagrams and simple link diagrams. The necessary basics of knot theory are then presented and the number-theoretic relationship between the topology of Feynman diagrams and knot theory is explored. Later chapters discuss four-term relations motivated by the discovery of Vassiliev invariants in knot theory and draw a link to algebraic structures recently observed in noncommutative geometry. Detailed references are included. Dealing with material at perhaps the most productive interface between mathematics and physics, the book will be of interest to theoretical and particle physicists, and mathematicians |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xii, 259 pages) |
ISBN: | 9780511564024 |
DOI: | 10.1017/CBO9780511564024 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941882 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2000 |||| o||u| ||||||eng d | ||
020 | |a 9780511564024 |c Online |9 978-0-511-56402-4 | ||
024 | 7 | |a 10.1017/CBO9780511564024 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511564024 | ||
035 | |a (OCoLC)849921856 | ||
035 | |a (DE-599)BVBBV043941882 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 530.14/3 |2 21 | |
084 | |a UO 4000 |0 (DE-625)146237: |2 rvk | ||
084 | |a UO 4020 |0 (DE-625)146239: |2 rvk | ||
084 | |a UO 4040 |0 (DE-625)146241: |2 rvk | ||
100 | 1 | |a Kreimer, Dirk |d 1960- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Knots and Feynman diagrams |c Dirk Kreimer |
246 | 1 | 3 | |a Knots & Feynman Diagrams |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2000 | |
300 | |a 1 online resource (xii, 259 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge lecture notes in physics |v 13 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book provides an accessible and up-to-date introduction to how knot theory and Feynman diagrams can be used to illuminate problems in quantum field theory. Beginning with a summary of key ideas from perturbative quantum field theory and an introduction to the Hopf algebra structure of renormalization, early chapters discuss the rationality of ladder diagrams and simple link diagrams. The necessary basics of knot theory are then presented and the number-theoretic relationship between the topology of Feynman diagrams and knot theory is explored. Later chapters discuss four-term relations motivated by the discovery of Vassiliev invariants in knot theory and draw a link to algebraic structures recently observed in noncommutative geometry. Detailed references are included. Dealing with material at perhaps the most productive interface between mathematics and physics, the book will be of interest to theoretical and particle physicists, and mathematicians | ||
650 | 4 | |a Quantum field theory | |
650 | 4 | |a Knot theory | |
650 | 4 | |a Feynman diagrams | |
650 | 0 | 7 | |a Knotentheorie |0 (DE-588)4164318-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hopf-Algebra |0 (DE-588)4160646-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Feynman-Graph |0 (DE-588)4154291-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Feynman-Graph |0 (DE-588)4154291-5 |D s |
689 | 0 | 1 | |a Knotentheorie |0 (DE-588)4164318-5 |D s |
689 | 0 | 2 | |a Hopf-Algebra |0 (DE-588)4160646-2 |D s |
689 | 0 | 3 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-58761-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511564024 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350852 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511564024 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511564024 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884125138944 |
---|---|
any_adam_object | |
author | Kreimer, Dirk 1960- |
author_facet | Kreimer, Dirk 1960- |
author_role | aut |
author_sort | Kreimer, Dirk 1960- |
author_variant | d k dk |
building | Verbundindex |
bvnumber | BV043941882 |
classification_rvk | UO 4000 UO 4020 UO 4040 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511564024 (OCoLC)849921856 (DE-599)BVBBV043941882 |
dewey-full | 530.14/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.14/3 |
dewey-search | 530.14/3 |
dewey-sort | 3530.14 13 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1017/CBO9780511564024 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03274nmm a2200589zcb4500</leader><controlfield tag="001">BV043941882</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511564024</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56402-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511564024</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511564024</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849921856</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941882</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.14/3</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4020</subfield><subfield code="0">(DE-625)146239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4040</subfield><subfield code="0">(DE-625)146241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kreimer, Dirk</subfield><subfield code="d">1960-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Knots and Feynman diagrams</subfield><subfield code="c">Dirk Kreimer</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Knots & Feynman Diagrams</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 259 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge lecture notes in physics</subfield><subfield code="v">13</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides an accessible and up-to-date introduction to how knot theory and Feynman diagrams can be used to illuminate problems in quantum field theory. Beginning with a summary of key ideas from perturbative quantum field theory and an introduction to the Hopf algebra structure of renormalization, early chapters discuss the rationality of ladder diagrams and simple link diagrams. The necessary basics of knot theory are then presented and the number-theoretic relationship between the topology of Feynman diagrams and knot theory is explored. Later chapters discuss four-term relations motivated by the discovery of Vassiliev invariants in knot theory and draw a link to algebraic structures recently observed in noncommutative geometry. Detailed references are included. Dealing with material at perhaps the most productive interface between mathematics and physics, the book will be of interest to theoretical and particle physicists, and mathematicians</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knot theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feynman diagrams</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Knotentheorie</subfield><subfield code="0">(DE-588)4164318-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hopf-Algebra</subfield><subfield code="0">(DE-588)4160646-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Feynman-Graph</subfield><subfield code="0">(DE-588)4154291-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Feynman-Graph</subfield><subfield code="0">(DE-588)4154291-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Knotentheorie</subfield><subfield code="0">(DE-588)4164318-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Hopf-Algebra</subfield><subfield code="0">(DE-588)4160646-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-58761-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511564024</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350852</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511564024</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511564024</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941882 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511564024 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350852 |
oclc_num | 849921856 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 259 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge lecture notes in physics |
spelling | Kreimer, Dirk 1960- Verfasser aut Knots and Feynman diagrams Dirk Kreimer Knots & Feynman Diagrams Cambridge Cambridge University Press 2000 1 online resource (xii, 259 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge lecture notes in physics 13 Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book provides an accessible and up-to-date introduction to how knot theory and Feynman diagrams can be used to illuminate problems in quantum field theory. Beginning with a summary of key ideas from perturbative quantum field theory and an introduction to the Hopf algebra structure of renormalization, early chapters discuss the rationality of ladder diagrams and simple link diagrams. The necessary basics of knot theory are then presented and the number-theoretic relationship between the topology of Feynman diagrams and knot theory is explored. Later chapters discuss four-term relations motivated by the discovery of Vassiliev invariants in knot theory and draw a link to algebraic structures recently observed in noncommutative geometry. Detailed references are included. Dealing with material at perhaps the most productive interface between mathematics and physics, the book will be of interest to theoretical and particle physicists, and mathematicians Quantum field theory Knot theory Feynman diagrams Knotentheorie (DE-588)4164318-5 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Hopf-Algebra (DE-588)4160646-2 gnd rswk-swf Feynman-Graph (DE-588)4154291-5 gnd rswk-swf Feynman-Graph (DE-588)4154291-5 s Knotentheorie (DE-588)4164318-5 s Hopf-Algebra (DE-588)4160646-2 s Quantenfeldtheorie (DE-588)4047984-5 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-58761-7 https://doi.org/10.1017/CBO9780511564024 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kreimer, Dirk 1960- Knots and Feynman diagrams Quantum field theory Knot theory Feynman diagrams Knotentheorie (DE-588)4164318-5 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd Hopf-Algebra (DE-588)4160646-2 gnd Feynman-Graph (DE-588)4154291-5 gnd |
subject_GND | (DE-588)4164318-5 (DE-588)4047984-5 (DE-588)4160646-2 (DE-588)4154291-5 |
title | Knots and Feynman diagrams |
title_alt | Knots & Feynman Diagrams |
title_auth | Knots and Feynman diagrams |
title_exact_search | Knots and Feynman diagrams |
title_full | Knots and Feynman diagrams Dirk Kreimer |
title_fullStr | Knots and Feynman diagrams Dirk Kreimer |
title_full_unstemmed | Knots and Feynman diagrams Dirk Kreimer |
title_short | Knots and Feynman diagrams |
title_sort | knots and feynman diagrams |
topic | Quantum field theory Knot theory Feynman diagrams Knotentheorie (DE-588)4164318-5 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd Hopf-Algebra (DE-588)4160646-2 gnd Feynman-Graph (DE-588)4154291-5 gnd |
topic_facet | Quantum field theory Knot theory Feynman diagrams Knotentheorie Quantenfeldtheorie Hopf-Algebra Feynman-Graph |
url | https://doi.org/10.1017/CBO9780511564024 |
work_keys_str_mv | AT kreimerdirk knotsandfeynmandiagrams AT kreimerdirk knotsfeynmandiagrams |