Random graph dynamics:
The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schriftenreihe: | Cambridge series on statistical and probabilistic mathematics
20 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (ix, 212 pages) |
ISBN: | 9780511546594 |
DOI: | 10.1017/CBO9780511546594 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941878 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780511546594 |c Online |9 978-0-511-54659-4 | ||
024 | 7 | |a 10.1017/CBO9780511546594 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511546594 | ||
035 | |a (OCoLC)850605721 | ||
035 | |a (DE-599)BVBBV043941878 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 511/.5 |2 22 | |
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
100 | 1 | |a Durrett, Richard |d 1951- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Random graph dynamics |c Rick Durrett |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 online resource (ix, 212 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge series on statistical and probabilistic mathematics |v 20 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Overview -- Erdös-Rényi random graphs -- Fixed degree distributions -- Power laws -- Small worlds -- Random walks -- CHKNS model | |
520 | |a The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter | ||
650 | 4 | |a Random graphs | |
650 | 0 | 7 | |a Zufallsgraph |0 (DE-588)4277661-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zufallsgraph |0 (DE-588)4277661-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-15016-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-86656-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511546594 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350848 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511546594 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511546594 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884130381824 |
---|---|
any_adam_object | |
author | Durrett, Richard 1951- |
author_facet | Durrett, Richard 1951- |
author_role | aut |
author_sort | Durrett, Richard 1951- |
author_variant | r d rd |
building | Verbundindex |
bvnumber | BV043941878 |
classification_rvk | SK 890 |
collection | ZDB-20-CBO |
contents | Overview -- Erdös-Rényi random graphs -- Fixed degree distributions -- Power laws -- Small worlds -- Random walks -- CHKNS model |
ctrlnum | (ZDB-20-CBO)CR9780511546594 (OCoLC)850605721 (DE-599)BVBBV043941878 |
dewey-full | 511/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.5 |
dewey-search | 511/.5 |
dewey-sort | 3511 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511546594 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03046nmm a2200481zcb4500</leader><controlfield tag="001">BV043941878</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511546594</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54659-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511546594</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511546594</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850605721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941878</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Durrett, Richard</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Random graph dynamics</subfield><subfield code="c">Rick Durrett</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 212 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge series on statistical and probabilistic mathematics</subfield><subfield code="v">20</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Overview -- Erdös-Rényi random graphs -- Fixed degree distributions -- Power laws -- Small worlds -- Random walks -- CHKNS model</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random graphs</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zufallsgraph</subfield><subfield code="0">(DE-588)4277661-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zufallsgraph</subfield><subfield code="0">(DE-588)4277661-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-15016-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-86656-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511546594</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350848</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546594</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546594</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941878 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511546594 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350848 |
oclc_num | 850605721 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (ix, 212 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge series on statistical and probabilistic mathematics |
spelling | Durrett, Richard 1951- Verfasser aut Random graph dynamics Rick Durrett Cambridge Cambridge University Press 2007 1 online resource (ix, 212 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge series on statistical and probabilistic mathematics 20 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Overview -- Erdös-Rényi random graphs -- Fixed degree distributions -- Power laws -- Small worlds -- Random walks -- CHKNS model The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter Random graphs Zufallsgraph (DE-588)4277661-2 gnd rswk-swf Zufallsgraph (DE-588)4277661-2 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-15016-3 Erscheint auch als Druckausgabe 978-0-521-86656-9 https://doi.org/10.1017/CBO9780511546594 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Durrett, Richard 1951- Random graph dynamics Overview -- Erdös-Rényi random graphs -- Fixed degree distributions -- Power laws -- Small worlds -- Random walks -- CHKNS model Random graphs Zufallsgraph (DE-588)4277661-2 gnd |
subject_GND | (DE-588)4277661-2 |
title | Random graph dynamics |
title_auth | Random graph dynamics |
title_exact_search | Random graph dynamics |
title_full | Random graph dynamics Rick Durrett |
title_fullStr | Random graph dynamics Rick Durrett |
title_full_unstemmed | Random graph dynamics Rick Durrett |
title_short | Random graph dynamics |
title_sort | random graph dynamics |
topic | Random graphs Zufallsgraph (DE-588)4277661-2 gnd |
topic_facet | Random graphs Zufallsgraph |
url | https://doi.org/10.1017/CBO9780511546594 |
work_keys_str_mv | AT durrettrichard randomgraphdynamics |