The Hardy-Littlewood method:
The Hardy-Littlewood method is a means of estimating the number of integer solutions of equations and was first applied to Waring's problem on representations of integers by sums of powers. This introduction to the method deals with its classical forms and outlines some of the more recent devel...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1997
|
Ausgabe: | Second edition |
Schriftenreihe: | Cambridge tracts in mathematics
125 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | The Hardy-Littlewood method is a means of estimating the number of integer solutions of equations and was first applied to Waring's problem on representations of integers by sums of powers. This introduction to the method deals with its classical forms and outlines some of the more recent developments. Now in its second edition, it has been fully updated; extensive revisions have been made and a new chapter added to take account of major advances by Vaughan and Wooley. The reader is expected to be familiar with elementary number theory and postgraduate students should find it of great use as an advanced textbook. It will also be indispensable to all lecturers and research workers interested in number theory and it is the standard reference on the Hardy-Littlewood method |
Beschreibung: | 1 Online-Ressource (vii, 232 Seiten) |
ISBN: | 9780511470929 |
DOI: | 10.1017/CBO9780511470929 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941861 | ||
003 | DE-604 | ||
005 | 20190516 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1997 |||| o||u| ||||||eng d | ||
020 | |a 9780511470929 |c Online |9 978-0-511-47092-9 | ||
024 | 7 | |a 10.1017/CBO9780511470929 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511470929 | ||
035 | |a (OCoLC)967601887 | ||
035 | |a (DE-599)BVBBV043941861 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 512.74 |2 21 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
100 | 1 | |a Vaughan, Robert Charles |e Verfasser |0 (DE-588)1057557110 |4 aut | |
245 | 1 | 0 | |a The Hardy-Littlewood method |c R.C. Vaughan |
250 | |a Second edition | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 1997 | |
300 | |a 1 Online-Ressource (vii, 232 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 125 | |
505 | 8 | |a 1. Introduction and historical background -- 2. The simplest upper bound for G(k) -- 3. Goldbach's problems -- 4. The major arcs in Waring's problem -- 5. Vinogradov's methods -- 6. Davenport's methods -- 7. Vinogradov's upper bound for G(k) -- 8. A ternary additive problem -- 9. Homogeneous equations and Birch's theorem -- 10. A theorem of Roth -- 11. Diophantine inequalities -- 12. Wooley's upper bound for G(k) | |
520 | |a The Hardy-Littlewood method is a means of estimating the number of integer solutions of equations and was first applied to Waring's problem on representations of integers by sums of powers. This introduction to the method deals with its classical forms and outlines some of the more recent developments. Now in its second edition, it has been fully updated; extensive revisions have been made and a new chapter added to take account of major advances by Vaughan and Wooley. The reader is expected to be familiar with elementary number theory and postgraduate students should find it of great use as an advanced textbook. It will also be indispensable to all lecturers and research workers interested in number theory and it is the standard reference on the Hardy-Littlewood method | ||
650 | 4 | |a Hardy-Littlewood method | |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hardy-Littlewood-Methode |0 (DE-588)4478761-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | 1 | |a Hardy-Littlewood-Methode |0 (DE-588)4478761-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-57347-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511470929 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350831 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511470929 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511470929 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511470929 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884095778816 |
---|---|
any_adam_object | |
author | Vaughan, Robert Charles |
author_GND | (DE-588)1057557110 |
author_facet | Vaughan, Robert Charles |
author_role | aut |
author_sort | Vaughan, Robert Charles |
author_variant | r c v rc rcv |
building | Verbundindex |
bvnumber | BV043941861 |
classification_rvk | SK 180 |
collection | ZDB-20-CBO |
contents | 1. Introduction and historical background -- 2. The simplest upper bound for G(k) -- 3. Goldbach's problems -- 4. The major arcs in Waring's problem -- 5. Vinogradov's methods -- 6. Davenport's methods -- 7. Vinogradov's upper bound for G(k) -- 8. A ternary additive problem -- 9. Homogeneous equations and Birch's theorem -- 10. A theorem of Roth -- 11. Diophantine inequalities -- 12. Wooley's upper bound for G(k) |
ctrlnum | (ZDB-20-CBO)CR9780511470929 (OCoLC)967601887 (DE-599)BVBBV043941861 |
dewey-full | 512.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.74 |
dewey-search | 512.74 |
dewey-sort | 3512.74 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511470929 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03238nmm a2200505zcb4500</leader><controlfield tag="001">BV043941861</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190516 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511470929</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-47092-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511470929</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511470929</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967601887</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941861</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.74</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vaughan, Robert Charles</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1057557110</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Hardy-Littlewood method</subfield><subfield code="c">R.C. Vaughan</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 232 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">125</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Introduction and historical background -- 2. The simplest upper bound for G(k) -- 3. Goldbach's problems -- 4. The major arcs in Waring's problem -- 5. Vinogradov's methods -- 6. Davenport's methods -- 7. Vinogradov's upper bound for G(k) -- 8. A ternary additive problem -- 9. Homogeneous equations and Birch's theorem -- 10. A theorem of Roth -- 11. Diophantine inequalities -- 12. Wooley's upper bound for G(k)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Hardy-Littlewood method is a means of estimating the number of integer solutions of equations and was first applied to Waring's problem on representations of integers by sums of powers. This introduction to the method deals with its classical forms and outlines some of the more recent developments. Now in its second edition, it has been fully updated; extensive revisions have been made and a new chapter added to take account of major advances by Vaughan and Wooley. The reader is expected to be familiar with elementary number theory and postgraduate students should find it of great use as an advanced textbook. It will also be indispensable to all lecturers and research workers interested in number theory and it is the standard reference on the Hardy-Littlewood method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hardy-Littlewood method</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hardy-Littlewood-Methode</subfield><subfield code="0">(DE-588)4478761-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hardy-Littlewood-Methode</subfield><subfield code="0">(DE-588)4478761-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-57347-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511470929</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350831</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511470929</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511470929</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511470929</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941861 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511470929 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350831 |
oclc_num | 967601887 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (vii, 232 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Vaughan, Robert Charles Verfasser (DE-588)1057557110 aut The Hardy-Littlewood method R.C. Vaughan Second edition Cambridge Cambridge University Press 1997 1 Online-Ressource (vii, 232 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 125 1. Introduction and historical background -- 2. The simplest upper bound for G(k) -- 3. Goldbach's problems -- 4. The major arcs in Waring's problem -- 5. Vinogradov's methods -- 6. Davenport's methods -- 7. Vinogradov's upper bound for G(k) -- 8. A ternary additive problem -- 9. Homogeneous equations and Birch's theorem -- 10. A theorem of Roth -- 11. Diophantine inequalities -- 12. Wooley's upper bound for G(k) The Hardy-Littlewood method is a means of estimating the number of integer solutions of equations and was first applied to Waring's problem on representations of integers by sums of powers. This introduction to the method deals with its classical forms and outlines some of the more recent developments. Now in its second edition, it has been fully updated; extensive revisions have been made and a new chapter added to take account of major advances by Vaughan and Wooley. The reader is expected to be familiar with elementary number theory and postgraduate students should find it of great use as an advanced textbook. It will also be indispensable to all lecturers and research workers interested in number theory and it is the standard reference on the Hardy-Littlewood method Hardy-Littlewood method Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Hardy-Littlewood-Methode (DE-588)4478761-3 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 s Hardy-Littlewood-Methode (DE-588)4478761-3 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 978-0-521-57347-4 https://doi.org/10.1017/CBO9780511470929 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Vaughan, Robert Charles The Hardy-Littlewood method 1. Introduction and historical background -- 2. The simplest upper bound for G(k) -- 3. Goldbach's problems -- 4. The major arcs in Waring's problem -- 5. Vinogradov's methods -- 6. Davenport's methods -- 7. Vinogradov's upper bound for G(k) -- 8. A ternary additive problem -- 9. Homogeneous equations and Birch's theorem -- 10. A theorem of Roth -- 11. Diophantine inequalities -- 12. Wooley's upper bound for G(k) Hardy-Littlewood method Zahlentheorie (DE-588)4067277-3 gnd Hardy-Littlewood-Methode (DE-588)4478761-3 gnd |
subject_GND | (DE-588)4067277-3 (DE-588)4478761-3 |
title | The Hardy-Littlewood method |
title_auth | The Hardy-Littlewood method |
title_exact_search | The Hardy-Littlewood method |
title_full | The Hardy-Littlewood method R.C. Vaughan |
title_fullStr | The Hardy-Littlewood method R.C. Vaughan |
title_full_unstemmed | The Hardy-Littlewood method R.C. Vaughan |
title_short | The Hardy-Littlewood method |
title_sort | the hardy littlewood method |
topic | Hardy-Littlewood method Zahlentheorie (DE-588)4067277-3 gnd Hardy-Littlewood-Methode (DE-588)4478761-3 gnd |
topic_facet | Hardy-Littlewood method Zahlentheorie Hardy-Littlewood-Methode |
url | https://doi.org/10.1017/CBO9780511470929 |
work_keys_str_mv | AT vaughanrobertcharles thehardylittlewoodmethod |