Lie groups, Lie algebras, cohomology, and some applications in physics:
Now in paperback, this book provides a self-contained introduction to the cohomology theory of Lie groups and algebras and to some of its applications in physics. No previous knowledge of the mathematical theory is assumed beyond some notions of Cartan calculus and differential geometry (which are n...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1995
|
Schriftenreihe: | Cambridge monographs on mathematical physics
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Now in paperback, this book provides a self-contained introduction to the cohomology theory of Lie groups and algebras and to some of its applications in physics. No previous knowledge of the mathematical theory is assumed beyond some notions of Cartan calculus and differential geometry (which are nevertheless reviewed in the book in detail). The examples, of current interest, are intended to clarify certain mathematical aspects and to show their usefulness in physical problems. The topics treated include the differential geometry of Lie groups, fibre bundles and connections, characteristic classes, index theorems, monopoles, instantons, extensions of Lie groups and algebras, some applications in supersymmetry, Chevalley-Eilenberg approach to Lie algebra cohomology, symplectic cohomology, jet-bundle approach to variational principles in mechanics, Wess-Zumino-Witten terms, infinite Lie algebras, the cohomological descent in mechanics and in gauge theories and anomalies. This book will be of interest to graduate students and researchers in theoretical physics and applied mathematics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvii, 455 pages) |
ISBN: | 9780511599897 |
DOI: | 10.1017/CBO9780511599897 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043941830 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1995 |||| o||u| ||||||eng d | ||
020 | |a 9780511599897 |c Online |9 978-0-511-59989-7 | ||
024 | 7 | |a 10.1017/CBO9780511599897 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511599897 | ||
035 | |a (OCoLC)849885267 | ||
035 | |a (DE-599)BVBBV043941830 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.55 |2 20 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Azcárraga, J. A. de |d 1941- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lie groups, Lie algebras, cohomology, and some applications in physics |c José A. de Azcárraga and José M. Izquierdo |
246 | 1 | 3 | |a Lie Groups, Lie Algebras, Cohomology & some Applications in Physics |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1995 | |
300 | |a 1 online resource (xvii, 455 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on mathematical physics | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Now in paperback, this book provides a self-contained introduction to the cohomology theory of Lie groups and algebras and to some of its applications in physics. No previous knowledge of the mathematical theory is assumed beyond some notions of Cartan calculus and differential geometry (which are nevertheless reviewed in the book in detail). The examples, of current interest, are intended to clarify certain mathematical aspects and to show their usefulness in physical problems. The topics treated include the differential geometry of Lie groups, fibre bundles and connections, characteristic classes, index theorems, monopoles, instantons, extensions of Lie groups and algebras, some applications in supersymmetry, Chevalley-Eilenberg approach to Lie algebra cohomology, symplectic cohomology, jet-bundle approach to variational principles in mechanics, Wess-Zumino-Witten terms, infinite Lie algebras, the cohomological descent in mechanics and in gauge theories and anomalies. This book will be of interest to graduate students and researchers in theoretical physics and applied mathematics | ||
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Lie algebras | |
650 | 4 | |a Homology theory | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kohomologietheorie |0 (DE-588)4164610-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 0 | 1 | |a Kohomologietheorie |0 (DE-588)4164610-1 |D s |
689 | 0 | 2 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Izquierdo, José M. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-46501-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-59700-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511599897 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350800 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511599897 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511599897 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884042301440 |
---|---|
any_adam_object | |
author | Azcárraga, J. A. de 1941- |
author_facet | Azcárraga, J. A. de 1941- |
author_role | aut |
author_sort | Azcárraga, J. A. de 1941- |
author_variant | j a d a jad jada |
building | Verbundindex |
bvnumber | BV043941830 |
classification_rvk | SK 340 SK 950 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511599897 (OCoLC)849885267 (DE-599)BVBBV043941830 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511599897 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03549nmm a2200601zc 4500</leader><controlfield tag="001">BV043941830</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511599897</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-59989-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511599897</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511599897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849885267</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941830</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Azcárraga, J. A. de</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie groups, Lie algebras, cohomology, and some applications in physics</subfield><subfield code="c">José A. de Azcárraga and José M. Izquierdo</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Lie Groups, Lie Algebras, Cohomology & some Applications in Physics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 455 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Now in paperback, this book provides a self-contained introduction to the cohomology theory of Lie groups and algebras and to some of its applications in physics. No previous knowledge of the mathematical theory is assumed beyond some notions of Cartan calculus and differential geometry (which are nevertheless reviewed in the book in detail). The examples, of current interest, are intended to clarify certain mathematical aspects and to show their usefulness in physical problems. The topics treated include the differential geometry of Lie groups, fibre bundles and connections, characteristic classes, index theorems, monopoles, instantons, extensions of Lie groups and algebras, some applications in supersymmetry, Chevalley-Eilenberg approach to Lie algebra cohomology, symplectic cohomology, jet-bundle approach to variational principles in mechanics, Wess-Zumino-Witten terms, infinite Lie algebras, the cohomological descent in mechanics and in gauge theories and anomalies. This book will be of interest to graduate students and researchers in theoretical physics and applied mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohomologietheorie</subfield><subfield code="0">(DE-588)4164610-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kohomologietheorie</subfield><subfield code="0">(DE-588)4164610-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Izquierdo, José M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-46501-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-59700-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511599897</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350800</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511599897</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511599897</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941830 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511599897 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350800 |
oclc_num | 849885267 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvii, 455 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on mathematical physics |
spelling | Azcárraga, J. A. de 1941- Verfasser aut Lie groups, Lie algebras, cohomology, and some applications in physics José A. de Azcárraga and José M. Izquierdo Lie Groups, Lie Algebras, Cohomology & some Applications in Physics Cambridge Cambridge University Press 1995 1 online resource (xvii, 455 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on mathematical physics Title from publisher's bibliographic system (viewed on 05 Oct 2015) Now in paperback, this book provides a self-contained introduction to the cohomology theory of Lie groups and algebras and to some of its applications in physics. No previous knowledge of the mathematical theory is assumed beyond some notions of Cartan calculus and differential geometry (which are nevertheless reviewed in the book in detail). The examples, of current interest, are intended to clarify certain mathematical aspects and to show their usefulness in physical problems. The topics treated include the differential geometry of Lie groups, fibre bundles and connections, characteristic classes, index theorems, monopoles, instantons, extensions of Lie groups and algebras, some applications in supersymmetry, Chevalley-Eilenberg approach to Lie algebra cohomology, symplectic cohomology, jet-bundle approach to variational principles in mechanics, Wess-Zumino-Witten terms, infinite Lie algebras, the cohomological descent in mechanics and in gauge theories and anomalies. This book will be of interest to graduate students and researchers in theoretical physics and applied mathematics Mathematische Physik Lie groups Lie algebras Homology theory Mathematical physics Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Kohomologietheorie (DE-588)4164610-1 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 s Kohomologietheorie (DE-588)4164610-1 s Lie-Gruppe (DE-588)4035695-4 s 1\p DE-604 Izquierdo, José M. Sonstige oth Erscheint auch als Druckausgabe 978-0-521-46501-4 Erscheint auch als Druckausgabe 978-0-521-59700-5 https://doi.org/10.1017/CBO9780511599897 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Azcárraga, J. A. de 1941- Lie groups, Lie algebras, cohomology, and some applications in physics Mathematische Physik Lie groups Lie algebras Homology theory Mathematical physics Lie-Gruppe (DE-588)4035695-4 gnd Kohomologietheorie (DE-588)4164610-1 gnd Lie-Algebra (DE-588)4130355-6 gnd |
subject_GND | (DE-588)4035695-4 (DE-588)4164610-1 (DE-588)4130355-6 |
title | Lie groups, Lie algebras, cohomology, and some applications in physics |
title_alt | Lie Groups, Lie Algebras, Cohomology & some Applications in Physics |
title_auth | Lie groups, Lie algebras, cohomology, and some applications in physics |
title_exact_search | Lie groups, Lie algebras, cohomology, and some applications in physics |
title_full | Lie groups, Lie algebras, cohomology, and some applications in physics José A. de Azcárraga and José M. Izquierdo |
title_fullStr | Lie groups, Lie algebras, cohomology, and some applications in physics José A. de Azcárraga and José M. Izquierdo |
title_full_unstemmed | Lie groups, Lie algebras, cohomology, and some applications in physics José A. de Azcárraga and José M. Izquierdo |
title_short | Lie groups, Lie algebras, cohomology, and some applications in physics |
title_sort | lie groups lie algebras cohomology and some applications in physics |
topic | Mathematische Physik Lie groups Lie algebras Homology theory Mathematical physics Lie-Gruppe (DE-588)4035695-4 gnd Kohomologietheorie (DE-588)4164610-1 gnd Lie-Algebra (DE-588)4130355-6 gnd |
topic_facet | Mathematische Physik Lie groups Lie algebras Homology theory Mathematical physics Lie-Gruppe Kohomologietheorie Lie-Algebra |
url | https://doi.org/10.1017/CBO9780511599897 |
work_keys_str_mv | AT azcarragajade liegroupsliealgebrascohomologyandsomeapplicationsinphysics AT izquierdojosem liegroupsliealgebrascohomologyandsomeapplicationsinphysics AT azcarragajade liegroupsliealgebrascohomologysomeapplicationsinphysics AT izquierdojosem liegroupsliealgebrascohomologysomeapplicationsinphysics |