Sets of multiples:
The theory of sets of multiples, a subject which lies at the intersection of analytic and probabilistic number theory, has seen much development since the publication of Sequences by Halberstam and Roth nearly thirty years ago. The area is rich in problems, many of them still unsolved or arising fro...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1996
|
Schriftenreihe: | Cambridge tracts in mathematics
118 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | The theory of sets of multiples, a subject which lies at the intersection of analytic and probabilistic number theory, has seen much development since the publication of Sequences by Halberstam and Roth nearly thirty years ago. The area is rich in problems, many of them still unsolved or arising from current work. The author sets out to give a coherent, essentially self-contained account of the existing theory and at the same time to bring the reader to the frontiers of research. One of the fascinations of the theory is the variety of methods applicable to it, which include Fourier analysis, group theory, high and ultra-low moments, probability and elementary inequalities, as well as several branches of number theory. This Tract is the first devoted to the subject, and will be of value to research workers or graduate students in number theory |
Beschreibung: | 1 Online-Ressource (xvi, 264 Seiten) |
ISBN: | 9780511566011 |
DOI: | 10.1017/CBO9780511566011 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941814 | ||
003 | DE-604 | ||
005 | 20190329 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1996 |||| o||u| ||||||eng d | ||
020 | |a 9780511566011 |c Online |9 978-0-511-56601-1 | ||
024 | 7 | |a 10.1017/CBO9780511566011 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511566011 | ||
035 | |a (OCoLC)849901381 | ||
035 | |a (DE-599)BVBBV043941814 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 512/.72 |2 20 | |
084 | |a SK 470 |0 (DE-625)143241: |2 rvk | ||
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
100 | 1 | |a Hall, Richard R. |e Verfasser |0 (DE-588)142400912 |4 aut | |
245 | 1 | 0 | |a Sets of multiples |c Richard R. Hall |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1996 | |
300 | |a 1 Online-Ressource (xvi, 264 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 118 | |
505 | 8 | |a 0. First ideas -- 1. Besicovitch and Behrend sequences -- 2. Derived sequences and densities -- 3. Oscillation -- 4. Probabilistic group theory -- 5. Divisor density -- 6. Divisor uniform distribution -- 7. H(x, y, z) | |
520 | |a The theory of sets of multiples, a subject which lies at the intersection of analytic and probabilistic number theory, has seen much development since the publication of Sequences by Halberstam and Roth nearly thirty years ago. The area is rich in problems, many of them still unsolved or arising from current work. The author sets out to give a coherent, essentially self-contained account of the existing theory and at the same time to bring the reader to the frontiers of research. One of the fascinations of the theory is the variety of methods applicable to it, which include Fourier analysis, group theory, high and ultra-low moments, probability and elementary inequalities, as well as several branches of number theory. This Tract is the first devoted to the subject, and will be of value to research workers or graduate students in number theory | ||
650 | 4 | |a Sequences (Mathematics) | |
650 | 0 | 7 | |a Sequentialanalyse |0 (DE-588)4128461-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sequentialanalyse |0 (DE-588)4128461-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-40424-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-10992-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511566011 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350784 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511566011 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511566011 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511566011 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883999309824 |
---|---|
any_adam_object | |
author | Hall, Richard R. |
author_GND | (DE-588)142400912 |
author_facet | Hall, Richard R. |
author_role | aut |
author_sort | Hall, Richard R. |
author_variant | r r h rr rrh |
building | Verbundindex |
bvnumber | BV043941814 |
classification_rvk | SK 470 SK 180 |
collection | ZDB-20-CBO |
contents | 0. First ideas -- 1. Besicovitch and Behrend sequences -- 2. Derived sequences and densities -- 3. Oscillation -- 4. Probabilistic group theory -- 5. Divisor density -- 6. Divisor uniform distribution -- 7. H(x, y, z) |
ctrlnum | (ZDB-20-CBO)CR9780511566011 (OCoLC)849901381 (DE-599)BVBBV043941814 |
dewey-full | 512/.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.72 |
dewey-search | 512/.72 |
dewey-sort | 3512 272 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511566011 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02957nmm a2200481zcb4500</leader><controlfield tag="001">BV043941814</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190329 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511566011</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56601-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511566011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511566011</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849901381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941814</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.72</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hall, Richard R.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142400912</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sets of multiples</subfield><subfield code="c">Richard R. Hall</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 264 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">118</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">0. First ideas -- 1. Besicovitch and Behrend sequences -- 2. Derived sequences and densities -- 3. Oscillation -- 4. Probabilistic group theory -- 5. Divisor density -- 6. Divisor uniform distribution -- 7. H(x, y, z)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of sets of multiples, a subject which lies at the intersection of analytic and probabilistic number theory, has seen much development since the publication of Sequences by Halberstam and Roth nearly thirty years ago. The area is rich in problems, many of them still unsolved or arising from current work. The author sets out to give a coherent, essentially self-contained account of the existing theory and at the same time to bring the reader to the frontiers of research. One of the fascinations of the theory is the variety of methods applicable to it, which include Fourier analysis, group theory, high and ultra-low moments, probability and elementary inequalities, as well as several branches of number theory. This Tract is the first devoted to the subject, and will be of value to research workers or graduate students in number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequences (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sequentialanalyse</subfield><subfield code="0">(DE-588)4128461-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sequentialanalyse</subfield><subfield code="0">(DE-588)4128461-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-40424-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-10992-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511566011</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350784</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511566011</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511566011</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511566011</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941814 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511566011 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350784 |
oclc_num | 849901381 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xvi, 264 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Hall, Richard R. Verfasser (DE-588)142400912 aut Sets of multiples Richard R. Hall Cambridge Cambridge University Press 1996 1 Online-Ressource (xvi, 264 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 118 0. First ideas -- 1. Besicovitch and Behrend sequences -- 2. Derived sequences and densities -- 3. Oscillation -- 4. Probabilistic group theory -- 5. Divisor density -- 6. Divisor uniform distribution -- 7. H(x, y, z) The theory of sets of multiples, a subject which lies at the intersection of analytic and probabilistic number theory, has seen much development since the publication of Sequences by Halberstam and Roth nearly thirty years ago. The area is rich in problems, many of them still unsolved or arising from current work. The author sets out to give a coherent, essentially self-contained account of the existing theory and at the same time to bring the reader to the frontiers of research. One of the fascinations of the theory is the variety of methods applicable to it, which include Fourier analysis, group theory, high and ultra-low moments, probability and elementary inequalities, as well as several branches of number theory. This Tract is the first devoted to the subject, and will be of value to research workers or graduate students in number theory Sequences (Mathematics) Sequentialanalyse (DE-588)4128461-6 gnd rswk-swf Sequentialanalyse (DE-588)4128461-6 s DE-604 Erscheint auch als Druck-Ausgabe 978-0-521-40424-2 Erscheint auch als Druck-Ausgabe 978-0-521-10992-5 https://doi.org/10.1017/CBO9780511566011 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Hall, Richard R. Sets of multiples 0. First ideas -- 1. Besicovitch and Behrend sequences -- 2. Derived sequences and densities -- 3. Oscillation -- 4. Probabilistic group theory -- 5. Divisor density -- 6. Divisor uniform distribution -- 7. H(x, y, z) Sequences (Mathematics) Sequentialanalyse (DE-588)4128461-6 gnd |
subject_GND | (DE-588)4128461-6 |
title | Sets of multiples |
title_auth | Sets of multiples |
title_exact_search | Sets of multiples |
title_full | Sets of multiples Richard R. Hall |
title_fullStr | Sets of multiples Richard R. Hall |
title_full_unstemmed | Sets of multiples Richard R. Hall |
title_short | Sets of multiples |
title_sort | sets of multiples |
topic | Sequences (Mathematics) Sequentialanalyse (DE-588)4128461-6 gnd |
topic_facet | Sequences (Mathematics) Sequentialanalyse |
url | https://doi.org/10.1017/CBO9780511566011 |
work_keys_str_mv | AT hallrichardr setsofmultiples |