Orthogonal polynomials of several variables:
This is the first modern book on orthogonal polynomials of several variables, which are interesting both as objects of study and as tools used in multivariate analysis, including approximations and numerical integration. The book, which is intended both as an introduction to the subject and as a ref...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2001
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 81 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | This is the first modern book on orthogonal polynomials of several variables, which are interesting both as objects of study and as tools used in multivariate analysis, including approximations and numerical integration. The book, which is intended both as an introduction to the subject and as a reference, presents the theory in elegant form and with modern concepts and notation. It introduces the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains such as the cube, the simplex, the sphere and the ball, or those of Gaussian type, for which fairly explicit formulae exist. The approach is a blend of classical analysis and symmetry-group-theoretic methods. Reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. The book will be welcomed by research mathematicians and applied scientists, including applied mathematicians, physicists, chemists and engineers |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xv, 390 pages) |
ISBN: | 9780511565717 |
DOI: | 10.1017/CBO9780511565717 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941813 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2001 |||| o||u| ||||||eng d | ||
020 | |a 9780511565717 |c Online |9 978-0-511-56571-7 | ||
024 | 7 | |a 10.1017/CBO9780511565717 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511565717 | ||
035 | |a (OCoLC)849880461 | ||
035 | |a (DE-599)BVBBV043941813 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.55 |2 21 | |
084 | |a SK 470 |0 (DE-625)143241: |2 rvk | ||
084 | |a SK 680 |0 (DE-625)143252: |2 rvk | ||
100 | 1 | |a Dunkl, Charles F. |d 1941- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Orthogonal polynomials of several variables |c Charles F. Dunkl, Yuan Xu |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2001 | |
300 | |a 1 online resource (xv, 390 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 81 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |t Examples of orthogonal polynomials in several bariables |t General properties of orthogonal polynomialsin several variables |t Root systems and coxeter groups |t Sperical harmonics associated with reflection groups |t Classical and generalized classical orthogonal polynomials |t Summability of orthogonal expansions |t Orthogonal polynomials associated with symmetric groups |t Orthogonal polynomials associated with octahedral groups and applications |
520 | |a This is the first modern book on orthogonal polynomials of several variables, which are interesting both as objects of study and as tools used in multivariate analysis, including approximations and numerical integration. The book, which is intended both as an introduction to the subject and as a reference, presents the theory in elegant form and with modern concepts and notation. It introduces the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains such as the cube, the simplex, the sphere and the ball, or those of Gaussian type, for which fairly explicit formulae exist. The approach is a blend of classical analysis and symmetry-group-theoretic methods. Reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. The book will be welcomed by research mathematicians and applied scientists, including applied mathematicians, physicists, chemists and engineers | ||
650 | 4 | |a Orthogonal polynomials | |
650 | 4 | |a Functions of several real variables | |
650 | 0 | 7 | |a Mehrere Variable |0 (DE-588)4277015-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |D s |
689 | 0 | 1 | |a Mehrere Variable |0 (DE-588)4277015-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Xu, Yuan |d 1957- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-80043-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511565717 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350783 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511565717 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511565717 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883996164096 |
---|---|
any_adam_object | |
author | Dunkl, Charles F. 1941- |
author_facet | Dunkl, Charles F. 1941- |
author_role | aut |
author_sort | Dunkl, Charles F. 1941- |
author_variant | c f d cf cfd |
building | Verbundindex |
bvnumber | BV043941813 |
classification_rvk | SK 470 SK 680 |
collection | ZDB-20-CBO |
contents | Examples of orthogonal polynomials in several bariables General properties of orthogonal polynomialsin several variables Root systems and coxeter groups Sperical harmonics associated with reflection groups Classical and generalized classical orthogonal polynomials Summability of orthogonal expansions Orthogonal polynomials associated with symmetric groups Orthogonal polynomials associated with octahedral groups and applications |
ctrlnum | (ZDB-20-CBO)CR9780511565717 (OCoLC)849880461 (DE-599)BVBBV043941813 |
dewey-full | 515/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.55 |
dewey-search | 515/.55 |
dewey-sort | 3515 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511565717 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03549nmm a2200529zcb4500</leader><controlfield tag="001">BV043941813</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511565717</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56571-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511565717</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511565717</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849880461</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941813</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.55</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 680</subfield><subfield code="0">(DE-625)143252:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dunkl, Charles F.</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Orthogonal polynomials of several variables</subfield><subfield code="c">Charles F. Dunkl, Yuan Xu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 390 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 81</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Examples of orthogonal polynomials in several bariables</subfield><subfield code="t">General properties of orthogonal polynomialsin several variables</subfield><subfield code="t">Root systems and coxeter groups</subfield><subfield code="t">Sperical harmonics associated with reflection groups</subfield><subfield code="t">Classical and generalized classical orthogonal polynomials</subfield><subfield code="t">Summability of orthogonal expansions</subfield><subfield code="t">Orthogonal polynomials associated with symmetric groups</subfield><subfield code="t">Orthogonal polynomials associated with octahedral groups and applications</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is the first modern book on orthogonal polynomials of several variables, which are interesting both as objects of study and as tools used in multivariate analysis, including approximations and numerical integration. The book, which is intended both as an introduction to the subject and as a reference, presents the theory in elegant form and with modern concepts and notation. It introduces the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains such as the cube, the simplex, the sphere and the ball, or those of Gaussian type, for which fairly explicit formulae exist. The approach is a blend of classical analysis and symmetry-group-theoretic methods. Reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. The book will be welcomed by research mathematicians and applied scientists, including applied mathematicians, physicists, chemists and engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of several real variables</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Yuan</subfield><subfield code="d">1957-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-80043-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511565717</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350783</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511565717</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511565717</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941813 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511565717 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350783 |
oclc_num | 849880461 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xv, 390 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Dunkl, Charles F. 1941- Verfasser aut Orthogonal polynomials of several variables Charles F. Dunkl, Yuan Xu Cambridge Cambridge University Press 2001 1 online resource (xv, 390 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 81 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Examples of orthogonal polynomials in several bariables General properties of orthogonal polynomialsin several variables Root systems and coxeter groups Sperical harmonics associated with reflection groups Classical and generalized classical orthogonal polynomials Summability of orthogonal expansions Orthogonal polynomials associated with symmetric groups Orthogonal polynomials associated with octahedral groups and applications This is the first modern book on orthogonal polynomials of several variables, which are interesting both as objects of study and as tools used in multivariate analysis, including approximations and numerical integration. The book, which is intended both as an introduction to the subject and as a reference, presents the theory in elegant form and with modern concepts and notation. It introduces the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains such as the cube, the simplex, the sphere and the ball, or those of Gaussian type, for which fairly explicit formulae exist. The approach is a blend of classical analysis and symmetry-group-theoretic methods. Reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. The book will be welcomed by research mathematicians and applied scientists, including applied mathematicians, physicists, chemists and engineers Orthogonal polynomials Functions of several real variables Mehrere Variable (DE-588)4277015-4 gnd rswk-swf Orthogonale Polynome (DE-588)4172863-4 gnd rswk-swf Orthogonale Polynome (DE-588)4172863-4 s Mehrere Variable (DE-588)4277015-4 s 1\p DE-604 Xu, Yuan 1957- Sonstige oth Erscheint auch als Druckausgabe 978-0-521-80043-3 https://doi.org/10.1017/CBO9780511565717 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dunkl, Charles F. 1941- Orthogonal polynomials of several variables Examples of orthogonal polynomials in several bariables General properties of orthogonal polynomialsin several variables Root systems and coxeter groups Sperical harmonics associated with reflection groups Classical and generalized classical orthogonal polynomials Summability of orthogonal expansions Orthogonal polynomials associated with symmetric groups Orthogonal polynomials associated with octahedral groups and applications Orthogonal polynomials Functions of several real variables Mehrere Variable (DE-588)4277015-4 gnd Orthogonale Polynome (DE-588)4172863-4 gnd |
subject_GND | (DE-588)4277015-4 (DE-588)4172863-4 |
title | Orthogonal polynomials of several variables |
title_alt | Examples of orthogonal polynomials in several bariables General properties of orthogonal polynomialsin several variables Root systems and coxeter groups Sperical harmonics associated with reflection groups Classical and generalized classical orthogonal polynomials Summability of orthogonal expansions Orthogonal polynomials associated with symmetric groups Orthogonal polynomials associated with octahedral groups and applications |
title_auth | Orthogonal polynomials of several variables |
title_exact_search | Orthogonal polynomials of several variables |
title_full | Orthogonal polynomials of several variables Charles F. Dunkl, Yuan Xu |
title_fullStr | Orthogonal polynomials of several variables Charles F. Dunkl, Yuan Xu |
title_full_unstemmed | Orthogonal polynomials of several variables Charles F. Dunkl, Yuan Xu |
title_short | Orthogonal polynomials of several variables |
title_sort | orthogonal polynomials of several variables |
topic | Orthogonal polynomials Functions of several real variables Mehrere Variable (DE-588)4277015-4 gnd Orthogonale Polynome (DE-588)4172863-4 gnd |
topic_facet | Orthogonal polynomials Functions of several real variables Mehrere Variable Orthogonale Polynome |
url | https://doi.org/10.1017/CBO9780511565717 |
work_keys_str_mv | AT dunklcharlesf orthogonalpolynomialsofseveralvariables AT xuyuan orthogonalpolynomialsofseveralvariables |