Representations of solvable groups:

Representation theory plays an important role in algebra, and in this book Manz and Wolf concentrate on that part of the theory which relates to solvable groups. The authors begin by studying modules over finite fields, which arise naturally as chief factors of solvable groups. The information obtai...

Full description

Saved in:
Bibliographic Details
Main Author: Manz, Olaf (Author)
Format: Electronic eBook
Language:English
Published: Cambridge Cambridge University Press 1993
Series:London Mathematical Society lecture note series 185
Subjects:
Online Access:BSB01
FHN01
Volltext
Summary:Representation theory plays an important role in algebra, and in this book Manz and Wolf concentrate on that part of the theory which relates to solvable groups. The authors begin by studying modules over finite fields, which arise naturally as chief factors of solvable groups. The information obtained can then be applied to infinite modules, and in particular to character theory (ordinary and Brauer) of solvable groups. The authors include proofs of Brauer's height zero conjecture and the Alperin-McKay conjecture for solvable groups. Gluck's permutation lemma and Huppert's classification of solvable two-transive permutation groups, which are essentially results about finite modules of finite groups, play important roles in the applications and a new proof is given of the latter. Researchers into group theory, representation theory, or both, will find that this book has much to offer
Item Description:Title from publisher's bibliographic system (viewed on 05 Oct 2015)
Physical Description:1 online resource (xi, 302 pages)
ISBN:9780511525971
DOI:10.1017/CBO9780511525971

There is no print copy available.

Interlibrary loan Place Request Caution: Not in THWS collection! Get full text