Representations of solvable groups:
Representation theory plays an important role in algebra, and in this book Manz and Wolf concentrate on that part of the theory which relates to solvable groups. The authors begin by studying modules over finite fields, which arise naturally as chief factors of solvable groups. The information obtai...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1993
|
Schriftenreihe: | London Mathematical Society lecture note series
185 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Representation theory plays an important role in algebra, and in this book Manz and Wolf concentrate on that part of the theory which relates to solvable groups. The authors begin by studying modules over finite fields, which arise naturally as chief factors of solvable groups. The information obtained can then be applied to infinite modules, and in particular to character theory (ordinary and Brauer) of solvable groups. The authors include proofs of Brauer's height zero conjecture and the Alperin-McKay conjecture for solvable groups. Gluck's permutation lemma and Huppert's classification of solvable two-transive permutation groups, which are essentially results about finite modules of finite groups, play important roles in the applications and a new proof is given of the latter. Researchers into group theory, representation theory, or both, will find that this book has much to offer |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 302 pages) |
ISBN: | 9780511525971 |
DOI: | 10.1017/CBO9780511525971 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941796 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1993 |||| o||u| ||||||eng d | ||
020 | |a 9780511525971 |c Online |9 978-0-511-52597-1 | ||
024 | 7 | |a 10.1017/CBO9780511525971 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511525971 | ||
035 | |a (OCoLC)849880977 | ||
035 | |a (DE-599)BVBBV043941796 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.2 |2 20 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Manz, Olaf |e Verfasser |4 aut | |
245 | 1 | 0 | |a Representations of solvable groups |c Olaf Manz and Thomas R. Wolf |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1993 | |
300 | |a 1 online resource (xi, 302 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 185 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Representation theory plays an important role in algebra, and in this book Manz and Wolf concentrate on that part of the theory which relates to solvable groups. The authors begin by studying modules over finite fields, which arise naturally as chief factors of solvable groups. The information obtained can then be applied to infinite modules, and in particular to character theory (ordinary and Brauer) of solvable groups. The authors include proofs of Brauer's height zero conjecture and the Alperin-McKay conjecture for solvable groups. Gluck's permutation lemma and Huppert's classification of solvable two-transive permutation groups, which are essentially results about finite modules of finite groups, play important roles in the applications and a new proof is given of the latter. Researchers into group theory, representation theory, or both, will find that this book has much to offer | ||
650 | 4 | |a Solvable groups | |
650 | 4 | |a Representations of groups | |
650 | 4 | |a Permutation groups | |
650 | 0 | 7 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Auflösbare Gruppe |0 (DE-588)4245706-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Auflösbare Gruppe |0 (DE-588)4245706-3 |D s |
689 | 0 | 1 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Wolf, Thomas R. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-39739-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511525971 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350766 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511525971 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511525971 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883966803968 |
---|---|
any_adam_object | |
author | Manz, Olaf |
author_facet | Manz, Olaf |
author_role | aut |
author_sort | Manz, Olaf |
author_variant | o m om |
building | Verbundindex |
bvnumber | BV043941796 |
classification_rvk | SI 320 SK 260 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511525971 (OCoLC)849880977 (DE-599)BVBBV043941796 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511525971 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02987nmm a2200529zcb4500</leader><controlfield tag="001">BV043941796</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511525971</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-52597-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511525971</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511525971</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849880977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941796</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Manz, Olaf</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representations of solvable groups</subfield><subfield code="c">Olaf Manz and Thomas R. Wolf</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 302 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">185</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Representation theory plays an important role in algebra, and in this book Manz and Wolf concentrate on that part of the theory which relates to solvable groups. The authors begin by studying modules over finite fields, which arise naturally as chief factors of solvable groups. The information obtained can then be applied to infinite modules, and in particular to character theory (ordinary and Brauer) of solvable groups. The authors include proofs of Brauer's height zero conjecture and the Alperin-McKay conjecture for solvable groups. Gluck's permutation lemma and Huppert's classification of solvable two-transive permutation groups, which are essentially results about finite modules of finite groups, play important roles in the applications and a new proof is given of the latter. Researchers into group theory, representation theory, or both, will find that this book has much to offer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solvable groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Permutation groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Auflösbare Gruppe</subfield><subfield code="0">(DE-588)4245706-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Auflösbare Gruppe</subfield><subfield code="0">(DE-588)4245706-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wolf, Thomas R.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-39739-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511525971</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350766</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511525971</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511525971</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941796 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511525971 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350766 |
oclc_num | 849880977 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xi, 302 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Manz, Olaf Verfasser aut Representations of solvable groups Olaf Manz and Thomas R. Wolf Cambridge Cambridge University Press 1993 1 online resource (xi, 302 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 185 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Representation theory plays an important role in algebra, and in this book Manz and Wolf concentrate on that part of the theory which relates to solvable groups. The authors begin by studying modules over finite fields, which arise naturally as chief factors of solvable groups. The information obtained can then be applied to infinite modules, and in particular to character theory (ordinary and Brauer) of solvable groups. The authors include proofs of Brauer's height zero conjecture and the Alperin-McKay conjecture for solvable groups. Gluck's permutation lemma and Huppert's classification of solvable two-transive permutation groups, which are essentially results about finite modules of finite groups, play important roles in the applications and a new proof is given of the latter. Researchers into group theory, representation theory, or both, will find that this book has much to offer Solvable groups Representations of groups Permutation groups Darstellung Mathematik (DE-588)4128289-9 gnd rswk-swf Auflösbare Gruppe (DE-588)4245706-3 gnd rswk-swf Auflösbare Gruppe (DE-588)4245706-3 s Darstellung Mathematik (DE-588)4128289-9 s 1\p DE-604 Wolf, Thomas R. Sonstige oth Erscheint auch als Druckausgabe 978-0-521-39739-1 https://doi.org/10.1017/CBO9780511525971 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Manz, Olaf Representations of solvable groups Solvable groups Representations of groups Permutation groups Darstellung Mathematik (DE-588)4128289-9 gnd Auflösbare Gruppe (DE-588)4245706-3 gnd |
subject_GND | (DE-588)4128289-9 (DE-588)4245706-3 |
title | Representations of solvable groups |
title_auth | Representations of solvable groups |
title_exact_search | Representations of solvable groups |
title_full | Representations of solvable groups Olaf Manz and Thomas R. Wolf |
title_fullStr | Representations of solvable groups Olaf Manz and Thomas R. Wolf |
title_full_unstemmed | Representations of solvable groups Olaf Manz and Thomas R. Wolf |
title_short | Representations of solvable groups |
title_sort | representations of solvable groups |
topic | Solvable groups Representations of groups Permutation groups Darstellung Mathematik (DE-588)4128289-9 gnd Auflösbare Gruppe (DE-588)4245706-3 gnd |
topic_facet | Solvable groups Representations of groups Permutation groups Darstellung Mathematik Auflösbare Gruppe |
url | https://doi.org/10.1017/CBO9780511525971 |
work_keys_str_mv | AT manzolaf representationsofsolvablegroups AT wolfthomasr representationsofsolvablegroups |