Noncommutative rational series with applications:
The algebraic theory of automata was created by Schützenberger and Chomsky over 50 years ago and there has since been a great deal of development. Classical work on the theory to noncommutative power series has been augmented more recently to areas such as representation theory, combinatorial mathem...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2011
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 137 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The algebraic theory of automata was created by Schützenberger and Chomsky over 50 years ago and there has since been a great deal of development. Classical work on the theory to noncommutative power series has been augmented more recently to areas such as representation theory, combinatorial mathematics and theoretical computer science. This book presents to an audience of graduate students and researchers a modern account of the subject and its applications. The algebraic approach allows the theory to be developed in a general form of wide applicability. For example, number-theoretic results can now be more fully explored, in addition to applications in automata theory, codes and non-commutative algebra. Much material, for example, Schützenberger's theorem on polynomially bounded rational series, appears here for the first time in book form. This is an excellent resource and reference for all those working in algebra, theoretical computer science and their areas of overlap |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiii, 248 pages) |
ISBN: | 9780511760860 |
DOI: | 10.1017/CBO9780511760860 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941773 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2011 |||| o||u| ||||||eng d | ||
020 | |a 9780511760860 |c Online |9 978-0-511-76086-0 | ||
024 | 7 | |a 10.1017/CBO9780511760860 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511760860 | ||
035 | |a (OCoLC)852654321 | ||
035 | |a (DE-599)BVBBV043941773 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 511.3/5 |2 22 | |
100 | 1 | |a Berstel, Jean |d 1941- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Noncommutative rational series with applications |c Jean Berstel, Christophe Reutenauer |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2011 | |
300 | |a 1 online resource (xiii, 248 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 137 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Preface; Part I. Rational Series: 1. Rational series; 2. Minimization; 3. Series and languages; 4. Rational expressions; Part II. Arithmetic: 5. Automatic sequences and algebraic series; 6. Rational series in one variable; 7. Changing the semiring; 8. Positive series in one variable; Part III. Applications: 9. Matrix semigroups and applications; 10. Noncommutative polynomials; 11. Codes and formal series; 12. Semisimple syntactic algebras; Open problems and conjectures; References; Index of notation; Index | |
520 | |a The algebraic theory of automata was created by Schützenberger and Chomsky over 50 years ago and there has since been a great deal of development. Classical work on the theory to noncommutative power series has been augmented more recently to areas such as representation theory, combinatorial mathematics and theoretical computer science. This book presents to an audience of graduate students and researchers a modern account of the subject and its applications. The algebraic approach allows the theory to be developed in a general form of wide applicability. For example, number-theoretic results can now be more fully explored, in addition to applications in automata theory, codes and non-commutative algebra. Much material, for example, Schützenberger's theorem on polynomially bounded rational series, appears here for the first time in book form. This is an excellent resource and reference for all those working in algebra, theoretical computer science and their areas of overlap | ||
650 | 4 | |a Machine theory | |
650 | 4 | |a Noncommutative algebras | |
650 | 0 | 7 | |a Reihe |0 (DE-588)4049197-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Automatentheorie |0 (DE-588)4141833-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtkommutative Algebra |0 (DE-588)4304013-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtkommutative Algebra |0 (DE-588)4304013-5 |D s |
689 | 0 | 1 | |a Reihe |0 (DE-588)4049197-3 |D s |
689 | 0 | 2 | |a Algebraische Automatentheorie |0 (DE-588)4141833-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Reutenauer, Christophe |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-19022-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511760860 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350743 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511760860 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511760860 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883937443840 |
---|---|
any_adam_object | |
author | Berstel, Jean 1941- |
author_facet | Berstel, Jean 1941- |
author_role | aut |
author_sort | Berstel, Jean 1941- |
author_variant | j b jb |
building | Verbundindex |
bvnumber | BV043941773 |
collection | ZDB-20-CBO |
contents | Preface; Part I. Rational Series: 1. Rational series; 2. Minimization; 3. Series and languages; 4. Rational expressions; Part II. Arithmetic: 5. Automatic sequences and algebraic series; 6. Rational series in one variable; 7. Changing the semiring; 8. Positive series in one variable; Part III. Applications: 9. Matrix semigroups and applications; 10. Noncommutative polynomials; 11. Codes and formal series; 12. Semisimple syntactic algebras; Open problems and conjectures; References; Index of notation; Index |
ctrlnum | (ZDB-20-CBO)CR9780511760860 (OCoLC)852654321 (DE-599)BVBBV043941773 |
dewey-full | 511.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/5 |
dewey-search | 511.3/5 |
dewey-sort | 3511.3 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511760860 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03655nmm a2200529zcb4500</leader><controlfield tag="001">BV043941773</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511760860</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-76086-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511760860</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511760860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852654321</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941773</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/5</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berstel, Jean</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Noncommutative rational series with applications</subfield><subfield code="c">Jean Berstel, Christophe Reutenauer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 248 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 137</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Preface; Part I. Rational Series: 1. Rational series; 2. Minimization; 3. Series and languages; 4. Rational expressions; Part II. Arithmetic: 5. Automatic sequences and algebraic series; 6. Rational series in one variable; 7. Changing the semiring; 8. Positive series in one variable; Part III. Applications: 9. Matrix semigroups and applications; 10. Noncommutative polynomials; 11. Codes and formal series; 12. Semisimple syntactic algebras; Open problems and conjectures; References; Index of notation; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The algebraic theory of automata was created by Schützenberger and Chomsky over 50 years ago and there has since been a great deal of development. Classical work on the theory to noncommutative power series has been augmented more recently to areas such as representation theory, combinatorial mathematics and theoretical computer science. This book presents to an audience of graduate students and researchers a modern account of the subject and its applications. The algebraic approach allows the theory to be developed in a general form of wide applicability. For example, number-theoretic results can now be more fully explored, in addition to applications in automata theory, codes and non-commutative algebra. Much material, for example, Schützenberger's theorem on polynomially bounded rational series, appears here for the first time in book form. This is an excellent resource and reference for all those working in algebra, theoretical computer science and their areas of overlap</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noncommutative algebras</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reihe</subfield><subfield code="0">(DE-588)4049197-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Automatentheorie</subfield><subfield code="0">(DE-588)4141833-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtkommutative Algebra</subfield><subfield code="0">(DE-588)4304013-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtkommutative Algebra</subfield><subfield code="0">(DE-588)4304013-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Reihe</subfield><subfield code="0">(DE-588)4049197-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Algebraische Automatentheorie</subfield><subfield code="0">(DE-588)4141833-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reutenauer, Christophe</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-19022-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511760860</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350743</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511760860</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511760860</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941773 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511760860 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350743 |
oclc_num | 852654321 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 248 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Berstel, Jean 1941- Verfasser aut Noncommutative rational series with applications Jean Berstel, Christophe Reutenauer Cambridge Cambridge University Press 2011 1 online resource (xiii, 248 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 137 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Preface; Part I. Rational Series: 1. Rational series; 2. Minimization; 3. Series and languages; 4. Rational expressions; Part II. Arithmetic: 5. Automatic sequences and algebraic series; 6. Rational series in one variable; 7. Changing the semiring; 8. Positive series in one variable; Part III. Applications: 9. Matrix semigroups and applications; 10. Noncommutative polynomials; 11. Codes and formal series; 12. Semisimple syntactic algebras; Open problems and conjectures; References; Index of notation; Index The algebraic theory of automata was created by Schützenberger and Chomsky over 50 years ago and there has since been a great deal of development. Classical work on the theory to noncommutative power series has been augmented more recently to areas such as representation theory, combinatorial mathematics and theoretical computer science. This book presents to an audience of graduate students and researchers a modern account of the subject and its applications. The algebraic approach allows the theory to be developed in a general form of wide applicability. For example, number-theoretic results can now be more fully explored, in addition to applications in automata theory, codes and non-commutative algebra. Much material, for example, Schützenberger's theorem on polynomially bounded rational series, appears here for the first time in book form. This is an excellent resource and reference for all those working in algebra, theoretical computer science and their areas of overlap Machine theory Noncommutative algebras Reihe (DE-588)4049197-3 gnd rswk-swf Algebraische Automatentheorie (DE-588)4141833-5 gnd rswk-swf Nichtkommutative Algebra (DE-588)4304013-5 gnd rswk-swf Nichtkommutative Algebra (DE-588)4304013-5 s Reihe (DE-588)4049197-3 s Algebraische Automatentheorie (DE-588)4141833-5 s 1\p DE-604 Reutenauer, Christophe Sonstige oth Erscheint auch als Druckausgabe 978-0-521-19022-0 https://doi.org/10.1017/CBO9780511760860 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Berstel, Jean 1941- Noncommutative rational series with applications Preface; Part I. Rational Series: 1. Rational series; 2. Minimization; 3. Series and languages; 4. Rational expressions; Part II. Arithmetic: 5. Automatic sequences and algebraic series; 6. Rational series in one variable; 7. Changing the semiring; 8. Positive series in one variable; Part III. Applications: 9. Matrix semigroups and applications; 10. Noncommutative polynomials; 11. Codes and formal series; 12. Semisimple syntactic algebras; Open problems and conjectures; References; Index of notation; Index Machine theory Noncommutative algebras Reihe (DE-588)4049197-3 gnd Algebraische Automatentheorie (DE-588)4141833-5 gnd Nichtkommutative Algebra (DE-588)4304013-5 gnd |
subject_GND | (DE-588)4049197-3 (DE-588)4141833-5 (DE-588)4304013-5 |
title | Noncommutative rational series with applications |
title_auth | Noncommutative rational series with applications |
title_exact_search | Noncommutative rational series with applications |
title_full | Noncommutative rational series with applications Jean Berstel, Christophe Reutenauer |
title_fullStr | Noncommutative rational series with applications Jean Berstel, Christophe Reutenauer |
title_full_unstemmed | Noncommutative rational series with applications Jean Berstel, Christophe Reutenauer |
title_short | Noncommutative rational series with applications |
title_sort | noncommutative rational series with applications |
topic | Machine theory Noncommutative algebras Reihe (DE-588)4049197-3 gnd Algebraische Automatentheorie (DE-588)4141833-5 gnd Nichtkommutative Algebra (DE-588)4304013-5 gnd |
topic_facet | Machine theory Noncommutative algebras Reihe Algebraische Automatentheorie Nichtkommutative Algebra |
url | https://doi.org/10.1017/CBO9780511760860 |
work_keys_str_mv | AT bersteljean noncommutativerationalserieswithapplications AT reutenauerchristophe noncommutativerationalserieswithapplications |