Orthogonal polynomials and continued fractions: from Euler's point of view
Continued fractions, studied since Ancient Greece, only became a powerful tool in the eighteenth century, in the hands of the great mathematician Euler. This book tells how Euler introduced the idea of orthogonal polynomials and combined the two subjects, and how Brouncker's formula of 1655 can...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2008
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 122 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Continued fractions, studied since Ancient Greece, only became a powerful tool in the eighteenth century, in the hands of the great mathematician Euler. This book tells how Euler introduced the idea of orthogonal polynomials and combined the two subjects, and how Brouncker's formula of 1655 can be derived from Euler's efforts in Special Functions and Orthogonal Polynomials. The most interesting applications of this work are discussed, including the great Markoff's Theorem on the Lagrange spectrum, Abel's Theorem on integration in finite terms, Chebyshev's Theory of Orthogonal Polynomials, and very recent advances in Orthogonal Polynomials on the unit circle. As continued fractions become more important again, in part due to their use in finding algorithms in approximation theory, this timely book revives the approach of Wallis, Brouncker and Euler and illustrates the continuing significance of their influence. A translation of Euler's famous paper 'Continued Fractions, Observation' is included as an Addendum |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvi, 478 pages) |
ISBN: | 9780511721403 |
DOI: | 10.1017/CBO9780511721403 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941769 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2008 |||| o||u| ||||||eng d | ||
020 | |a 9780511721403 |c Online |9 978-0-511-72140-3 | ||
024 | 7 | |a 10.1017/CBO9780511721403 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511721403 | ||
035 | |a (OCoLC)850901343 | ||
035 | |a (DE-599)BVBBV043941769 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515.55 |2 22 | |
084 | |a SK 470 |0 (DE-625)143241: |2 rvk | ||
084 | |a SK 680 |0 (DE-625)143252: |2 rvk | ||
100 | 1 | |a Khrushchev, S. V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Orthogonal polynomials and continued fractions |b from Euler's point of view |c Sergey Khrushchev |
246 | 1 | 3 | |a Orthogonal Polynomials & Continued Fractions |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2008 | |
300 | |a 1 online resource (xvi, 478 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 122 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Continued fractions: real numbers -- Continued fractions: algebra -- Continued fractions: analysis -- Continued fractions: Euler -- Continued fractions: Euler's influence -- P-fractions -- Orthogonal polynomials -- Orthogonal polynomials on the unit circle -- Appendix. Continued fractions, observations L. Euler (1739) | |
520 | |a Continued fractions, studied since Ancient Greece, only became a powerful tool in the eighteenth century, in the hands of the great mathematician Euler. This book tells how Euler introduced the idea of orthogonal polynomials and combined the two subjects, and how Brouncker's formula of 1655 can be derived from Euler's efforts in Special Functions and Orthogonal Polynomials. The most interesting applications of this work are discussed, including the great Markoff's Theorem on the Lagrange spectrum, Abel's Theorem on integration in finite terms, Chebyshev's Theory of Orthogonal Polynomials, and very recent advances in Orthogonal Polynomials on the unit circle. As continued fractions become more important again, in part due to their use in finding algorithms in approximation theory, this timely book revives the approach of Wallis, Brouncker and Euler and illustrates the continuing significance of their influence. A translation of Euler's famous paper 'Continued Fractions, Observation' is included as an Addendum | ||
600 | 1 | 4 | |a Euler, Leonhard / 1707-1783 |
600 | 1 | 7 | |a Euler, Leonhard |d 1707-1783 |0 (DE-588)118531379 |2 gnd |9 rswk-swf |
650 | 4 | |a Orthogonal polynomials | |
650 | 4 | |a Continued fractions | |
650 | 0 | 7 | |a Kettenbruch |0 (DE-588)4030401-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Euler, Leonhard |d 1707-1783 |0 (DE-588)118531379 |D p |
689 | 0 | 1 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |D s |
689 | 0 | 2 | |a Kettenbruch |0 (DE-588)4030401-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-85419-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511721403 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350739 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511721403 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511721403 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883926958080 |
---|---|
any_adam_object | |
author | Khrushchev, S. V. |
author_facet | Khrushchev, S. V. |
author_role | aut |
author_sort | Khrushchev, S. V. |
author_variant | s v k sv svk |
building | Verbundindex |
bvnumber | BV043941769 |
classification_rvk | SK 470 SK 680 |
collection | ZDB-20-CBO |
contents | Continued fractions: real numbers -- Continued fractions: algebra -- Continued fractions: analysis -- Continued fractions: Euler -- Continued fractions: Euler's influence -- P-fractions -- Orthogonal polynomials -- Orthogonal polynomials on the unit circle -- Appendix. Continued fractions, observations L. Euler (1739) |
ctrlnum | (ZDB-20-CBO)CR9780511721403 (OCoLC)850901343 (DE-599)BVBBV043941769 |
dewey-full | 515.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.55 |
dewey-search | 515.55 |
dewey-sort | 3515.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511721403 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03641nmm a2200565zcb4500</leader><controlfield tag="001">BV043941769</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511721403</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-72140-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511721403</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511721403</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850901343</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941769</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 680</subfield><subfield code="0">(DE-625)143252:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khrushchev, S. V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Orthogonal polynomials and continued fractions</subfield><subfield code="b">from Euler's point of view</subfield><subfield code="c">Sergey Khrushchev</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Orthogonal Polynomials & Continued Fractions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 478 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 122</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Continued fractions: real numbers -- Continued fractions: algebra -- Continued fractions: analysis -- Continued fractions: Euler -- Continued fractions: Euler's influence -- P-fractions -- Orthogonal polynomials -- Orthogonal polynomials on the unit circle -- Appendix. Continued fractions, observations L. Euler (1739)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Continued fractions, studied since Ancient Greece, only became a powerful tool in the eighteenth century, in the hands of the great mathematician Euler. This book tells how Euler introduced the idea of orthogonal polynomials and combined the two subjects, and how Brouncker's formula of 1655 can be derived from Euler's efforts in Special Functions and Orthogonal Polynomials. The most interesting applications of this work are discussed, including the great Markoff's Theorem on the Lagrange spectrum, Abel's Theorem on integration in finite terms, Chebyshev's Theory of Orthogonal Polynomials, and very recent advances in Orthogonal Polynomials on the unit circle. As continued fractions become more important again, in part due to their use in finding algorithms in approximation theory, this timely book revives the approach of Wallis, Brouncker and Euler and illustrates the continuing significance of their influence. A translation of Euler's famous paper 'Continued Fractions, Observation' is included as an Addendum</subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Euler, Leonhard / 1707-1783</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Euler, Leonhard</subfield><subfield code="d">1707-1783</subfield><subfield code="0">(DE-588)118531379</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continued fractions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kettenbruch</subfield><subfield code="0">(DE-588)4030401-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Euler, Leonhard</subfield><subfield code="d">1707-1783</subfield><subfield code="0">(DE-588)118531379</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kettenbruch</subfield><subfield code="0">(DE-588)4030401-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-85419-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511721403</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350739</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721403</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721403</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941769 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511721403 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350739 |
oclc_num | 850901343 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvi, 478 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Khrushchev, S. V. Verfasser aut Orthogonal polynomials and continued fractions from Euler's point of view Sergey Khrushchev Orthogonal Polynomials & Continued Fractions Cambridge Cambridge University Press 2008 1 online resource (xvi, 478 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 122 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Continued fractions: real numbers -- Continued fractions: algebra -- Continued fractions: analysis -- Continued fractions: Euler -- Continued fractions: Euler's influence -- P-fractions -- Orthogonal polynomials -- Orthogonal polynomials on the unit circle -- Appendix. Continued fractions, observations L. Euler (1739) Continued fractions, studied since Ancient Greece, only became a powerful tool in the eighteenth century, in the hands of the great mathematician Euler. This book tells how Euler introduced the idea of orthogonal polynomials and combined the two subjects, and how Brouncker's formula of 1655 can be derived from Euler's efforts in Special Functions and Orthogonal Polynomials. The most interesting applications of this work are discussed, including the great Markoff's Theorem on the Lagrange spectrum, Abel's Theorem on integration in finite terms, Chebyshev's Theory of Orthogonal Polynomials, and very recent advances in Orthogonal Polynomials on the unit circle. As continued fractions become more important again, in part due to their use in finding algorithms in approximation theory, this timely book revives the approach of Wallis, Brouncker and Euler and illustrates the continuing significance of their influence. A translation of Euler's famous paper 'Continued Fractions, Observation' is included as an Addendum Euler, Leonhard / 1707-1783 Euler, Leonhard 1707-1783 (DE-588)118531379 gnd rswk-swf Orthogonal polynomials Continued fractions Kettenbruch (DE-588)4030401-2 gnd rswk-swf Orthogonale Polynome (DE-588)4172863-4 gnd rswk-swf Euler, Leonhard 1707-1783 (DE-588)118531379 p Orthogonale Polynome (DE-588)4172863-4 s Kettenbruch (DE-588)4030401-2 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-85419-1 https://doi.org/10.1017/CBO9780511721403 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Khrushchev, S. V. Orthogonal polynomials and continued fractions from Euler's point of view Continued fractions: real numbers -- Continued fractions: algebra -- Continued fractions: analysis -- Continued fractions: Euler -- Continued fractions: Euler's influence -- P-fractions -- Orthogonal polynomials -- Orthogonal polynomials on the unit circle -- Appendix. Continued fractions, observations L. Euler (1739) Euler, Leonhard / 1707-1783 Euler, Leonhard 1707-1783 (DE-588)118531379 gnd Orthogonal polynomials Continued fractions Kettenbruch (DE-588)4030401-2 gnd Orthogonale Polynome (DE-588)4172863-4 gnd |
subject_GND | (DE-588)118531379 (DE-588)4030401-2 (DE-588)4172863-4 |
title | Orthogonal polynomials and continued fractions from Euler's point of view |
title_alt | Orthogonal Polynomials & Continued Fractions |
title_auth | Orthogonal polynomials and continued fractions from Euler's point of view |
title_exact_search | Orthogonal polynomials and continued fractions from Euler's point of view |
title_full | Orthogonal polynomials and continued fractions from Euler's point of view Sergey Khrushchev |
title_fullStr | Orthogonal polynomials and continued fractions from Euler's point of view Sergey Khrushchev |
title_full_unstemmed | Orthogonal polynomials and continued fractions from Euler's point of view Sergey Khrushchev |
title_short | Orthogonal polynomials and continued fractions |
title_sort | orthogonal polynomials and continued fractions from euler s point of view |
title_sub | from Euler's point of view |
topic | Euler, Leonhard / 1707-1783 Euler, Leonhard 1707-1783 (DE-588)118531379 gnd Orthogonal polynomials Continued fractions Kettenbruch (DE-588)4030401-2 gnd Orthogonale Polynome (DE-588)4172863-4 gnd |
topic_facet | Euler, Leonhard / 1707-1783 Euler, Leonhard 1707-1783 Orthogonal polynomials Continued fractions Kettenbruch Orthogonale Polynome |
url | https://doi.org/10.1017/CBO9780511721403 |
work_keys_str_mv | AT khrushchevsv orthogonalpolynomialsandcontinuedfractionsfromeulerspointofview AT khrushchevsv orthogonalpolynomialscontinuedfractions |