Algebraic topology via differential geometry:
In this volume the authors seek to illustrate how methods of differential geometry find application in the study of the topology of differential manifolds. Prerequisites are few since the authors take pains to set out the theory of differential forms and the algebra required. The reader is introduce...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1987
|
Schriftenreihe: | London Mathematical Society lecture note series
99 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | In this volume the authors seek to illustrate how methods of differential geometry find application in the study of the topology of differential manifolds. Prerequisites are few since the authors take pains to set out the theory of differential forms and the algebra required. The reader is introduced to De Rham cohomology, and explicit and detailed calculations are present as examples. Topics covered include Mayer-Vietoris exact sequences, relative cohomology, Pioncare duality and Lefschetz's theorem. This book will be suitable for graduate students taking courses in algebraic topology and in differential topology. Mathematicians studying relativity and mathematical physics will find this an invaluable introduction to the techniques of differential geometry |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (363 pages) |
ISBN: | 9780511629372 |
DOI: | 10.1017/CBO9780511629372 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941764 | ||
003 | DE-604 | ||
005 | 20220202 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1987 |||| o||u| ||||||eng d | ||
020 | |a 9780511629372 |c Online |9 978-0-511-62937-2 | ||
024 | 7 | |a 10.1017/CBO9780511629372 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511629372 | ||
035 | |a (OCoLC)967600975 | ||
035 | |a (DE-599)BVBBV043941764 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.55 |2 19eng | |
100 | 1 | |a Karoubi, Max |e Verfasser |4 aut | |
240 | 1 | 0 | |a Méthodes de géométrie différentielle en topologie algébrique |
245 | 1 | 0 | |a Algebraic topology via differential geometry |c M. Karoubi and C. Leruste |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1987 | |
300 | |a 1 online resource (363 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 99 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a In this volume the authors seek to illustrate how methods of differential geometry find application in the study of the topology of differential manifolds. Prerequisites are few since the authors take pains to set out the theory of differential forms and the algebra required. The reader is introduced to De Rham cohomology, and explicit and detailed calculations are present as examples. Topics covered include Mayer-Vietoris exact sequences, relative cohomology, Pioncare duality and Lefschetz's theorem. This book will be suitable for graduate students taking courses in algebraic topology and in differential topology. Mathematicians studying relativity and mathematical physics will find this an invaluable introduction to the techniques of differential geometry | ||
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Geometry, Differential | |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Topologie |0 (DE-588)4120861-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a DeRham-Kohomologie |0 (DE-588)4352640-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Algebra |0 (DE-588)4377377-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Topologie |0 (DE-588)4120861-4 |D s |
689 | 0 | 1 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 2 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Algebraische Topologie |0 (DE-588)4120861-4 |D s |
689 | 1 | 1 | |a DeRham-Kohomologie |0 (DE-588)4352640-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Topologische Algebra |0 (DE-588)4377377-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Leruste, C. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |z 978-0-521-31714-6 |n Druck-Ausgabe |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511629372 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350734 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511629372 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511629372 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883911229440 |
---|---|
any_adam_object | |
author | Karoubi, Max |
author_facet | Karoubi, Max |
author_role | aut |
author_sort | Karoubi, Max |
author_variant | m k mk |
building | Verbundindex |
bvnumber | BV043941764 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511629372 (OCoLC)967600975 (DE-599)BVBBV043941764 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511629372 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03467nmm a2200637zcb4500</leader><controlfield tag="001">BV043941764</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220202 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511629372</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-62937-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511629372</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511629372</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967600975</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941764</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Karoubi, Max</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Méthodes de géométrie différentielle en topologie algébrique</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic topology via differential geometry</subfield><subfield code="c">M. Karoubi and C. Leruste</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (363 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">99</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this volume the authors seek to illustrate how methods of differential geometry find application in the study of the topology of differential manifolds. Prerequisites are few since the authors take pains to set out the theory of differential forms and the algebra required. The reader is introduced to De Rham cohomology, and explicit and detailed calculations are present as examples. Topics covered include Mayer-Vietoris exact sequences, relative cohomology, Pioncare duality and Lefschetz's theorem. This book will be suitable for graduate students taking courses in algebraic topology and in differential topology. Mathematicians studying relativity and mathematical physics will find this an invaluable introduction to the techniques of differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">DeRham-Kohomologie</subfield><subfield code="0">(DE-588)4352640-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Algebra</subfield><subfield code="0">(DE-588)4377377-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">DeRham-Kohomologie</subfield><subfield code="0">(DE-588)4352640-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Topologische Algebra</subfield><subfield code="0">(DE-588)4377377-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leruste, C.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="z">978-0-521-31714-6</subfield><subfield code="n">Druck-Ausgabe</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511629372</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350734</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511629372</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511629372</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941764 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511629372 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350734 |
oclc_num | 967600975 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (363 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Karoubi, Max Verfasser aut Méthodes de géométrie différentielle en topologie algébrique Algebraic topology via differential geometry M. Karoubi and C. Leruste Cambridge Cambridge University Press 1987 1 online resource (363 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 99 Title from publisher's bibliographic system (viewed on 05 Oct 2015) In this volume the authors seek to illustrate how methods of differential geometry find application in the study of the topology of differential manifolds. Prerequisites are few since the authors take pains to set out the theory of differential forms and the algebra required. The reader is introduced to De Rham cohomology, and explicit and detailed calculations are present as examples. Topics covered include Mayer-Vietoris exact sequences, relative cohomology, Pioncare duality and Lefschetz's theorem. This book will be suitable for graduate students taking courses in algebraic topology and in differential topology. Mathematicians studying relativity and mathematical physics will find this an invaluable introduction to the techniques of differential geometry Algebraic topology Geometry, Differential Geometrie (DE-588)4020236-7 gnd rswk-swf Algebraische Topologie (DE-588)4120861-4 gnd rswk-swf DeRham-Kohomologie (DE-588)4352640-8 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Topologische Algebra (DE-588)4377377-1 gnd rswk-swf Algebraische Topologie (DE-588)4120861-4 s Mannigfaltigkeit (DE-588)4037379-4 s Geometrie (DE-588)4020236-7 s 1\p DE-604 DeRham-Kohomologie (DE-588)4352640-8 s 2\p DE-604 Topologische Algebra (DE-588)4377377-1 s 3\p DE-604 Leruste, C. Sonstige oth Erscheint auch als 978-0-521-31714-6 Druck-Ausgabe https://doi.org/10.1017/CBO9780511629372 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Karoubi, Max Algebraic topology via differential geometry Algebraic topology Geometry, Differential Geometrie (DE-588)4020236-7 gnd Algebraische Topologie (DE-588)4120861-4 gnd DeRham-Kohomologie (DE-588)4352640-8 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Topologische Algebra (DE-588)4377377-1 gnd |
subject_GND | (DE-588)4020236-7 (DE-588)4120861-4 (DE-588)4352640-8 (DE-588)4037379-4 (DE-588)4377377-1 |
title | Algebraic topology via differential geometry |
title_alt | Méthodes de géométrie différentielle en topologie algébrique |
title_auth | Algebraic topology via differential geometry |
title_exact_search | Algebraic topology via differential geometry |
title_full | Algebraic topology via differential geometry M. Karoubi and C. Leruste |
title_fullStr | Algebraic topology via differential geometry M. Karoubi and C. Leruste |
title_full_unstemmed | Algebraic topology via differential geometry M. Karoubi and C. Leruste |
title_short | Algebraic topology via differential geometry |
title_sort | algebraic topology via differential geometry |
topic | Algebraic topology Geometry, Differential Geometrie (DE-588)4020236-7 gnd Algebraische Topologie (DE-588)4120861-4 gnd DeRham-Kohomologie (DE-588)4352640-8 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Topologische Algebra (DE-588)4377377-1 gnd |
topic_facet | Algebraic topology Geometry, Differential Geometrie Algebraische Topologie DeRham-Kohomologie Mannigfaltigkeit Topologische Algebra |
url | https://doi.org/10.1017/CBO9780511629372 |
work_keys_str_mv | AT karoubimax methodesdegeometriedifferentielleentopologiealgebrique AT lerustec methodesdegeometriedifferentielleentopologiealgebrique AT karoubimax algebraictopologyviadifferentialgeometry AT lerustec algebraictopologyviadifferentialgeometry |