Generalized topological degree and semilinear equations:
This book describes many new results and extensions of the theory of generalised topological degree for densely defined A-proper operators and presents important applications, particularly to boundary value problems of non-linear ordinary and partial differential equations, which are intractable und...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1995
|
Schriftenreihe: | Cambridge tracts in mathematics
117 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | This book describes many new results and extensions of the theory of generalised topological degree for densely defined A-proper operators and presents important applications, particularly to boundary value problems of non-linear ordinary and partial differential equations, which are intractable under any other existing theory. A-proper mappings arise naturally in the solution to an equation in infinite dimensional space via the finite dimensional approximation. This theory subsumes classical theory involving compact vector fields, as well as the more recent theories of condensing vector-fields, strongly monotone and strongly accretive maps. Researchers and graduate students in mathematics, applied mathematics and physics who make use of non-linear analysis will find this an important resource for new techniques |
Beschreibung: | 1 Online-Ressource (x, 240 Seiten) |
ISBN: | 9780511574832 |
DOI: | 10.1017/CBO9780511574832 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941759 | ||
003 | DE-604 | ||
005 | 20190429 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1995 |||| o||u| ||||||eng d | ||
020 | |a 9780511574832 |c Online |9 978-0-511-57483-2 | ||
024 | 7 | |a 10.1017/CBO9780511574832 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511574832 | ||
035 | |a (OCoLC)849936234 | ||
035 | |a (DE-599)BVBBV043941759 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 514/.2 |2 20 | |
082 | 0 | |a 514.2 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
100 | 1 | |a Petryshyn, Wolodymyr V. |d 1929- |e Verfasser |0 (DE-588)133034143 |4 aut | |
245 | 1 | 0 | |a Generalized topological degree and semilinear equations |c Wolodymyr V. Petryshyn |
246 | 1 | 3 | |a Generalized Topological Degree & Semilinear Equations |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1995 | |
300 | |a 1 Online-Ressource (x, 240 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 117 | |
505 | 8 | |a Introduction to the Brouwer and Leray-Schauder degrees, A-proper mappings, and linear theory -- Generalized degree for densely defined A-proper mappings, with some applications to semilinear equations -- Solvability of periodic semilinear ODEs at resonance -- Semiconstructive solvability, existence theorems, and structure of the solution set -- Solvability of semilinear PDEs at resonance | |
520 | |a This book describes many new results and extensions of the theory of generalised topological degree for densely defined A-proper operators and presents important applications, particularly to boundary value problems of non-linear ordinary and partial differential equations, which are intractable under any other existing theory. A-proper mappings arise naturally in the solution to an equation in infinite dimensional space via the finite dimensional approximation. This theory subsumes classical theory involving compact vector fields, as well as the more recent theories of condensing vector-fields, strongly monotone and strongly accretive maps. Researchers and graduate students in mathematics, applied mathematics and physics who make use of non-linear analysis will find this an important resource for new techniques | ||
650 | 4 | |a Topological degree | |
650 | 4 | |a Boundary value problems | |
650 | 0 | 7 | |a Abbildungsgrad |0 (DE-588)4140975-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Randwertproblem |0 (DE-588)4048395-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Abbildungsgrad |0 (DE-588)4140975-9 |D s |
689 | 0 | 1 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-44474-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511574832 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350729 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511574832 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511574832 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511574832 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883911229440 |
---|---|
any_adam_object | |
author | Petryshyn, Wolodymyr V. 1929- |
author_GND | (DE-588)133034143 |
author_facet | Petryshyn, Wolodymyr V. 1929- |
author_role | aut |
author_sort | Petryshyn, Wolodymyr V. 1929- |
author_variant | w v p wv wvp |
building | Verbundindex |
bvnumber | BV043941759 |
classification_rvk | SK 600 |
collection | ZDB-20-CBO |
contents | Introduction to the Brouwer and Leray-Schauder degrees, A-proper mappings, and linear theory -- Generalized degree for densely defined A-proper mappings, with some applications to semilinear equations -- Solvability of periodic semilinear ODEs at resonance -- Semiconstructive solvability, existence theorems, and structure of the solution set -- Solvability of semilinear PDEs at resonance |
ctrlnum | (ZDB-20-CBO)CR9780511574832 (OCoLC)849936234 (DE-599)BVBBV043941759 |
dewey-full | 514/.2 514.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.2 514.2 |
dewey-search | 514/.2 514.2 |
dewey-sort | 3514 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511574832 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03282nmm a2200517zcb4500</leader><controlfield tag="001">BV043941759</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190429 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511574832</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-57483-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511574832</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511574832</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849936234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941759</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.2</subfield><subfield code="2">20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Petryshyn, Wolodymyr V.</subfield><subfield code="d">1929-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133034143</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generalized topological degree and semilinear equations</subfield><subfield code="c">Wolodymyr V. Petryshyn</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Generalized Topological Degree & Semilinear Equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 240 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">117</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction to the Brouwer and Leray-Schauder degrees, A-proper mappings, and linear theory -- Generalized degree for densely defined A-proper mappings, with some applications to semilinear equations -- Solvability of periodic semilinear ODEs at resonance -- Semiconstructive solvability, existence theorems, and structure of the solution set -- Solvability of semilinear PDEs at resonance</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book describes many new results and extensions of the theory of generalised topological degree for densely defined A-proper operators and presents important applications, particularly to boundary value problems of non-linear ordinary and partial differential equations, which are intractable under any other existing theory. A-proper mappings arise naturally in the solution to an equation in infinite dimensional space via the finite dimensional approximation. This theory subsumes classical theory involving compact vector fields, as well as the more recent theories of condensing vector-fields, strongly monotone and strongly accretive maps. Researchers and graduate students in mathematics, applied mathematics and physics who make use of non-linear analysis will find this an important resource for new techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological degree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary value problems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abbildungsgrad</subfield><subfield code="0">(DE-588)4140975-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Abbildungsgrad</subfield><subfield code="0">(DE-588)4140975-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-44474-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511574832</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350729</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511574832</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511574832</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511574832</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941759 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511574832 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350729 |
oclc_num | 849936234 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (x, 240 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Petryshyn, Wolodymyr V. 1929- Verfasser (DE-588)133034143 aut Generalized topological degree and semilinear equations Wolodymyr V. Petryshyn Generalized Topological Degree & Semilinear Equations Cambridge Cambridge University Press 1995 1 Online-Ressource (x, 240 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 117 Introduction to the Brouwer and Leray-Schauder degrees, A-proper mappings, and linear theory -- Generalized degree for densely defined A-proper mappings, with some applications to semilinear equations -- Solvability of periodic semilinear ODEs at resonance -- Semiconstructive solvability, existence theorems, and structure of the solution set -- Solvability of semilinear PDEs at resonance This book describes many new results and extensions of the theory of generalised topological degree for densely defined A-proper operators and presents important applications, particularly to boundary value problems of non-linear ordinary and partial differential equations, which are intractable under any other existing theory. A-proper mappings arise naturally in the solution to an equation in infinite dimensional space via the finite dimensional approximation. This theory subsumes classical theory involving compact vector fields, as well as the more recent theories of condensing vector-fields, strongly monotone and strongly accretive maps. Researchers and graduate students in mathematics, applied mathematics and physics who make use of non-linear analysis will find this an important resource for new techniques Topological degree Boundary value problems Abbildungsgrad (DE-588)4140975-9 gnd rswk-swf Randwertproblem (DE-588)4048395-2 gnd rswk-swf Abbildungsgrad (DE-588)4140975-9 s Randwertproblem (DE-588)4048395-2 s DE-604 Erscheint auch als Druck-Ausgabe 978-0-521-44474-3 https://doi.org/10.1017/CBO9780511574832 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Petryshyn, Wolodymyr V. 1929- Generalized topological degree and semilinear equations Introduction to the Brouwer and Leray-Schauder degrees, A-proper mappings, and linear theory -- Generalized degree for densely defined A-proper mappings, with some applications to semilinear equations -- Solvability of periodic semilinear ODEs at resonance -- Semiconstructive solvability, existence theorems, and structure of the solution set -- Solvability of semilinear PDEs at resonance Topological degree Boundary value problems Abbildungsgrad (DE-588)4140975-9 gnd Randwertproblem (DE-588)4048395-2 gnd |
subject_GND | (DE-588)4140975-9 (DE-588)4048395-2 |
title | Generalized topological degree and semilinear equations |
title_alt | Generalized Topological Degree & Semilinear Equations |
title_auth | Generalized topological degree and semilinear equations |
title_exact_search | Generalized topological degree and semilinear equations |
title_full | Generalized topological degree and semilinear equations Wolodymyr V. Petryshyn |
title_fullStr | Generalized topological degree and semilinear equations Wolodymyr V. Petryshyn |
title_full_unstemmed | Generalized topological degree and semilinear equations Wolodymyr V. Petryshyn |
title_short | Generalized topological degree and semilinear equations |
title_sort | generalized topological degree and semilinear equations |
topic | Topological degree Boundary value problems Abbildungsgrad (DE-588)4140975-9 gnd Randwertproblem (DE-588)4048395-2 gnd |
topic_facet | Topological degree Boundary value problems Abbildungsgrad Randwertproblem |
url | https://doi.org/10.1017/CBO9780511574832 |
work_keys_str_mv | AT petryshynwolodymyrv generalizedtopologicaldegreeandsemilinearequations AT petryshynwolodymyrv generalizedtopologicaldegreesemilinearequations |