Continuous and discrete modules:
Continuous and discrete modules are, essentially, generalizations of infective and projective modules respectively. Continuous modules provide an appropriate setting for decomposition theory of von Neumann algebras and have important applications to C*-algebras. Discrete modules constitute a dual co...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1990
|
Schriftenreihe: | London Mathematical Society lecture note series
147 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | Continuous and discrete modules are, essentially, generalizations of infective and projective modules respectively. Continuous modules provide an appropriate setting for decomposition theory of von Neumann algebras and have important applications to C*-algebras. Discrete modules constitute a dual concept and are related to number theory and algebraic geometry: they possess perfect decomposition properties. The advantage of both types of module is that the Krull-Schmidt theorem can be applied, in part, to them. The authors present here a complete account of the subject and at the same time give a unified picture of the theory. The treatment is essentially self-contained, with background facts being summarized in the first chapter. This book will be useful therefore either to individuals beginning research, or the more experienced worker in algebra and representation theory |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (126 pages) |
ISBN: | 9780511600692 |
DOI: | 10.1017/CBO9780511600692 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941754 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1990 |||| o||u| ||||||eng d | ||
020 | |a 9780511600692 |c Online |9 978-0-511-60069-2 | ||
024 | 7 | |a 10.1017/CBO9780511600692 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511600692 | ||
035 | |a (OCoLC)967600838 | ||
035 | |a (DE-599)BVBBV043941754 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.4 |2 20 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Mohamed, Saad H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Continuous and discrete modules |c Saad H. Mohamed, Bruno J. Müller |
246 | 1 | 3 | |a Continuous & Discrete Modules |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1990 | |
300 | |a 1 online resource (126 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 147 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Continuous and discrete modules are, essentially, generalizations of infective and projective modules respectively. Continuous modules provide an appropriate setting for decomposition theory of von Neumann algebras and have important applications to C*-algebras. Discrete modules constitute a dual concept and are related to number theory and algebraic geometry: they possess perfect decomposition properties. The advantage of both types of module is that the Krull-Schmidt theorem can be applied, in part, to them. The authors present here a complete account of the subject and at the same time give a unified picture of the theory. The treatment is essentially self-contained, with background facts being summarized in the first chapter. This book will be useful therefore either to individuals beginning research, or the more experienced worker in algebra and representation theory | ||
650 | 4 | |a Injective modules (Algebra) | |
650 | 4 | |a Projective modules (Algebra) | |
650 | 4 | |a Representations of rings (Algebra) | |
650 | 4 | |a Decomposition (Mathematics) | |
650 | 0 | 7 | |a Stetiger Modul |0 (DE-588)4200110-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diskreter Modul |0 (DE-588)4232089-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Diskreter Modul |0 (DE-588)4232089-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Stetiger Modul |0 (DE-588)4200110-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Müller, Bruno J. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-39975-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511600692 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350724 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511600692 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511600692 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883874529280 |
---|---|
any_adam_object | |
author | Mohamed, Saad H. |
author_facet | Mohamed, Saad H. |
author_role | aut |
author_sort | Mohamed, Saad H. |
author_variant | s h m sh shm |
building | Verbundindex |
bvnumber | BV043941754 |
classification_rvk | SI 320 SK 230 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511600692 (OCoLC)967600838 (DE-599)BVBBV043941754 |
dewey-full | 512/.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.4 |
dewey-search | 512/.4 |
dewey-sort | 3512 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511600692 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03192nmm a2200577zcb4500</leader><controlfield tag="001">BV043941754</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511600692</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-60069-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511600692</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511600692</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967600838</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941754</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.4</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mohamed, Saad H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continuous and discrete modules</subfield><subfield code="c">Saad H. Mohamed, Bruno J. Müller</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Continuous & Discrete Modules</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (126 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">147</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Continuous and discrete modules are, essentially, generalizations of infective and projective modules respectively. Continuous modules provide an appropriate setting for decomposition theory of von Neumann algebras and have important applications to C*-algebras. Discrete modules constitute a dual concept and are related to number theory and algebraic geometry: they possess perfect decomposition properties. The advantage of both types of module is that the Krull-Schmidt theorem can be applied, in part, to them. The authors present here a complete account of the subject and at the same time give a unified picture of the theory. The treatment is essentially self-contained, with background facts being summarized in the first chapter. This book will be useful therefore either to individuals beginning research, or the more experienced worker in algebra and representation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Injective modules (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Projective modules (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of rings (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decomposition (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stetiger Modul</subfield><subfield code="0">(DE-588)4200110-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskreter Modul</subfield><subfield code="0">(DE-588)4232089-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diskreter Modul</subfield><subfield code="0">(DE-588)4232089-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Stetiger Modul</subfield><subfield code="0">(DE-588)4200110-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Müller, Bruno J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-39975-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511600692</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350724</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511600692</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511600692</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941754 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511600692 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350724 |
oclc_num | 967600838 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (126 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Mohamed, Saad H. Verfasser aut Continuous and discrete modules Saad H. Mohamed, Bruno J. Müller Continuous & Discrete Modules Cambridge Cambridge University Press 1990 1 online resource (126 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 147 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Continuous and discrete modules are, essentially, generalizations of infective and projective modules respectively. Continuous modules provide an appropriate setting for decomposition theory of von Neumann algebras and have important applications to C*-algebras. Discrete modules constitute a dual concept and are related to number theory and algebraic geometry: they possess perfect decomposition properties. The advantage of both types of module is that the Krull-Schmidt theorem can be applied, in part, to them. The authors present here a complete account of the subject and at the same time give a unified picture of the theory. The treatment is essentially self-contained, with background facts being summarized in the first chapter. This book will be useful therefore either to individuals beginning research, or the more experienced worker in algebra and representation theory Injective modules (Algebra) Projective modules (Algebra) Representations of rings (Algebra) Decomposition (Mathematics) Stetiger Modul (DE-588)4200110-9 gnd rswk-swf Diskreter Modul (DE-588)4232089-6 gnd rswk-swf Diskreter Modul (DE-588)4232089-6 s 1\p DE-604 Stetiger Modul (DE-588)4200110-9 s 2\p DE-604 Müller, Bruno J. Sonstige oth Erscheint auch als Druckausgabe 978-0-521-39975-3 https://doi.org/10.1017/CBO9780511600692 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mohamed, Saad H. Continuous and discrete modules Injective modules (Algebra) Projective modules (Algebra) Representations of rings (Algebra) Decomposition (Mathematics) Stetiger Modul (DE-588)4200110-9 gnd Diskreter Modul (DE-588)4232089-6 gnd |
subject_GND | (DE-588)4200110-9 (DE-588)4232089-6 |
title | Continuous and discrete modules |
title_alt | Continuous & Discrete Modules |
title_auth | Continuous and discrete modules |
title_exact_search | Continuous and discrete modules |
title_full | Continuous and discrete modules Saad H. Mohamed, Bruno J. Müller |
title_fullStr | Continuous and discrete modules Saad H. Mohamed, Bruno J. Müller |
title_full_unstemmed | Continuous and discrete modules Saad H. Mohamed, Bruno J. Müller |
title_short | Continuous and discrete modules |
title_sort | continuous and discrete modules |
topic | Injective modules (Algebra) Projective modules (Algebra) Representations of rings (Algebra) Decomposition (Mathematics) Stetiger Modul (DE-588)4200110-9 gnd Diskreter Modul (DE-588)4232089-6 gnd |
topic_facet | Injective modules (Algebra) Projective modules (Algebra) Representations of rings (Algebra) Decomposition (Mathematics) Stetiger Modul Diskreter Modul |
url | https://doi.org/10.1017/CBO9780511600692 |
work_keys_str_mv | AT mohamedsaadh continuousanddiscretemodules AT mullerbrunoj continuousanddiscretemodules AT mohamedsaadh continuousdiscretemodules AT mullerbrunoj continuousdiscretemodules |