Matrices of sign-solvable linear systems:
The sign-solvability of a linear system implies that the signs of the entries of the solution are determined solely on the basis of the signs of the coefficients of the system. That it might be worthwhile and possible to investigate such linear systems was recognised by Samuelson in his classic book...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1995
|
Schriftenreihe: | Cambridge tracts in mathematics
116 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | The sign-solvability of a linear system implies that the signs of the entries of the solution are determined solely on the basis of the signs of the coefficients of the system. That it might be worthwhile and possible to investigate such linear systems was recognised by Samuelson in his classic book Foundations of Economic Analysis. Sign-solvability is part of a larger study which seeks to understand the special circumstances under which an algebraic, analytic or geometric property of a matrix can be determined from the combinatorial arrangement of the positive, negative and zero elements of the matrix. The large and diffuse body of literature connected with sign-solvability is presented as a coherent whole for the first time in this book, displaying it as a beautiful interplay between combinatorics and linear algebra. One of the features of this book is that algorithms that are implicit in many of the proofs have been explicitly described and their complexity has been commented on |
Beschreibung: | 1 Online-Ressource (xii, 298 Seiten) |
ISBN: | 9780511574733 |
DOI: | 10.1017/CBO9780511574733 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941747 | ||
003 | DE-604 | ||
005 | 20190313 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1995 |||| o||u| ||||||eng d | ||
020 | |a 9780511574733 |c Online |9 978-0-511-57473-3 | ||
024 | 7 | |a 10.1017/CBO9780511574733 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511574733 | ||
035 | |a (OCoLC)849904200 | ||
035 | |a (DE-599)BVBBV043941747 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 512.9/434 |2 20 | |
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
100 | 1 | |a Brualdi, Richard A. |d 1939- |e Verfasser |0 (DE-588)113645112 |4 aut | |
245 | 1 | 0 | |a Matrices of sign-solvable linear systems |c Richard A. Brualdi, Bryan L. Shader |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1995 | |
300 | |a 1 Online-Ressource (xii, 298 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 116 | |
505 | 8 | |a Sign-solvability -- L-matrices -- Sign-solvability and digraphs -- S-matrices -- Beyond S*-matrices -- SNS-matrices -- S2NS-matrices -- External properties of L-Matrices -- The inverse sign pattern graph -- Sign stability -- Related topics | |
520 | |a The sign-solvability of a linear system implies that the signs of the entries of the solution are determined solely on the basis of the signs of the coefficients of the system. That it might be worthwhile and possible to investigate such linear systems was recognised by Samuelson in his classic book Foundations of Economic Analysis. Sign-solvability is part of a larger study which seeks to understand the special circumstances under which an algebraic, analytic or geometric property of a matrix can be determined from the combinatorial arrangement of the positive, negative and zero elements of the matrix. The large and diffuse body of literature connected with sign-solvability is presented as a coherent whole for the first time in this book, displaying it as a beautiful interplay between combinatorics and linear algebra. One of the features of this book is that algorithms that are implicit in many of the proofs have been explicitly described and their complexity has been commented on | ||
650 | 4 | |a Matrices | |
650 | 0 | 7 | |a Kombinatorik |0 (DE-588)4031824-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vorzeichen |g Mathematik |0 (DE-588)4503227-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrizentheorie |0 (DE-588)4128970-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Matrizentheorie |0 (DE-588)4128970-5 |D s |
689 | 0 | 1 | |a Kombinatorik |0 (DE-588)4031824-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Matrizentheorie |0 (DE-588)4128970-5 |D s |
689 | 1 | 1 | |a Vorzeichen |g Mathematik |0 (DE-588)4503227-0 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Shader, Bryan L. |e Sonstige |0 (DE-588)142400866 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-48296-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-10582-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511574733 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350717 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511574733 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511574733 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511574733 |l UBR01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883861946368 |
---|---|
any_adam_object | |
author | Brualdi, Richard A. 1939- |
author_GND | (DE-588)113645112 (DE-588)142400866 |
author_facet | Brualdi, Richard A. 1939- |
author_role | aut |
author_sort | Brualdi, Richard A. 1939- |
author_variant | r a b ra rab |
building | Verbundindex |
bvnumber | BV043941747 |
classification_rvk | SK 220 |
collection | ZDB-20-CBO |
contents | Sign-solvability -- L-matrices -- Sign-solvability and digraphs -- S-matrices -- Beyond S*-matrices -- SNS-matrices -- S2NS-matrices -- External properties of L-Matrices -- The inverse sign pattern graph -- Sign stability -- Related topics |
ctrlnum | (ZDB-20-CBO)CR9780511574733 (OCoLC)849904200 (DE-599)BVBBV043941747 |
dewey-full | 512.9/434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9/434 |
dewey-search | 512.9/434 |
dewey-sort | 3512.9 3434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511574733 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03452nmm a2200553zcb4500</leader><controlfield tag="001">BV043941747</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190313 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511574733</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-57473-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511574733</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511574733</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849904200</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941747</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.9/434</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brualdi, Richard A.</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113645112</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matrices of sign-solvable linear systems</subfield><subfield code="c">Richard A. Brualdi, Bryan L. Shader</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 298 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">116</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Sign-solvability -- L-matrices -- Sign-solvability and digraphs -- S-matrices -- Beyond S*-matrices -- SNS-matrices -- S2NS-matrices -- External properties of L-Matrices -- The inverse sign pattern graph -- Sign stability -- Related topics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The sign-solvability of a linear system implies that the signs of the entries of the solution are determined solely on the basis of the signs of the coefficients of the system. That it might be worthwhile and possible to investigate such linear systems was recognised by Samuelson in his classic book Foundations of Economic Analysis. Sign-solvability is part of a larger study which seeks to understand the special circumstances under which an algebraic, analytic or geometric property of a matrix can be determined from the combinatorial arrangement of the positive, negative and zero elements of the matrix. The large and diffuse body of literature connected with sign-solvability is presented as a coherent whole for the first time in this book, displaying it as a beautiful interplay between combinatorics and linear algebra. One of the features of this book is that algorithms that are implicit in many of the proofs have been explicitly described and their complexity has been commented on</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vorzeichen</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4503227-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizentheorie</subfield><subfield code="0">(DE-588)4128970-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Matrizentheorie</subfield><subfield code="0">(DE-588)4128970-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Matrizentheorie</subfield><subfield code="0">(DE-588)4128970-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Vorzeichen</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4503227-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shader, Bryan L.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)142400866</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-48296-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-10582-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511574733</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350717</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511574733</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511574733</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511574733</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941747 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511574733 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350717 |
oclc_num | 849904200 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xii, 298 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Brualdi, Richard A. 1939- Verfasser (DE-588)113645112 aut Matrices of sign-solvable linear systems Richard A. Brualdi, Bryan L. Shader Cambridge Cambridge University Press 1995 1 Online-Ressource (xii, 298 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 116 Sign-solvability -- L-matrices -- Sign-solvability and digraphs -- S-matrices -- Beyond S*-matrices -- SNS-matrices -- S2NS-matrices -- External properties of L-Matrices -- The inverse sign pattern graph -- Sign stability -- Related topics The sign-solvability of a linear system implies that the signs of the entries of the solution are determined solely on the basis of the signs of the coefficients of the system. That it might be worthwhile and possible to investigate such linear systems was recognised by Samuelson in his classic book Foundations of Economic Analysis. Sign-solvability is part of a larger study which seeks to understand the special circumstances under which an algebraic, analytic or geometric property of a matrix can be determined from the combinatorial arrangement of the positive, negative and zero elements of the matrix. The large and diffuse body of literature connected with sign-solvability is presented as a coherent whole for the first time in this book, displaying it as a beautiful interplay between combinatorics and linear algebra. One of the features of this book is that algorithms that are implicit in many of the proofs have been explicitly described and their complexity has been commented on Matrices Kombinatorik (DE-588)4031824-2 gnd rswk-swf Vorzeichen Mathematik (DE-588)4503227-0 gnd rswk-swf Matrizentheorie (DE-588)4128970-5 gnd rswk-swf Matrizentheorie (DE-588)4128970-5 s Kombinatorik (DE-588)4031824-2 s DE-604 Vorzeichen Mathematik (DE-588)4503227-0 s Shader, Bryan L. Sonstige (DE-588)142400866 oth Erscheint auch als Druck-Ausgabe 978-0-521-48296-7 Erscheint auch als Druck-Ausgabe 978-0-521-10582-8 https://doi.org/10.1017/CBO9780511574733 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Brualdi, Richard A. 1939- Matrices of sign-solvable linear systems Sign-solvability -- L-matrices -- Sign-solvability and digraphs -- S-matrices -- Beyond S*-matrices -- SNS-matrices -- S2NS-matrices -- External properties of L-Matrices -- The inverse sign pattern graph -- Sign stability -- Related topics Matrices Kombinatorik (DE-588)4031824-2 gnd Vorzeichen Mathematik (DE-588)4503227-0 gnd Matrizentheorie (DE-588)4128970-5 gnd |
subject_GND | (DE-588)4031824-2 (DE-588)4503227-0 (DE-588)4128970-5 |
title | Matrices of sign-solvable linear systems |
title_auth | Matrices of sign-solvable linear systems |
title_exact_search | Matrices of sign-solvable linear systems |
title_full | Matrices of sign-solvable linear systems Richard A. Brualdi, Bryan L. Shader |
title_fullStr | Matrices of sign-solvable linear systems Richard A. Brualdi, Bryan L. Shader |
title_full_unstemmed | Matrices of sign-solvable linear systems Richard A. Brualdi, Bryan L. Shader |
title_short | Matrices of sign-solvable linear systems |
title_sort | matrices of sign solvable linear systems |
topic | Matrices Kombinatorik (DE-588)4031824-2 gnd Vorzeichen Mathematik (DE-588)4503227-0 gnd Matrizentheorie (DE-588)4128970-5 gnd |
topic_facet | Matrices Kombinatorik Vorzeichen Mathematik Matrizentheorie |
url | https://doi.org/10.1017/CBO9780511574733 |
work_keys_str_mv | AT brualdiricharda matricesofsignsolvablelinearsystems AT shaderbryanl matricesofsignsolvablelinearsystems |