Supermanifolds:
This is an updated and expanded second edition of a successful and well-reviewed text presenting a detailed exposition of the modern theory of supermanifolds, including a rigorous account of the super-analogs of all the basic structures of ordinary manifold theory. The exposition opens with the theo...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1991
|
Ausgabe: | Second edition |
Schriftenreihe: | Cambridge monographs on mathematical physics
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | This is an updated and expanded second edition of a successful and well-reviewed text presenting a detailed exposition of the modern theory of supermanifolds, including a rigorous account of the super-analogs of all the basic structures of ordinary manifold theory. The exposition opens with the theory of analysis over supernumbers (Grassman variables), Berezin integration, supervector spaces and the superdeterminant. This basic material is then applied to the theory of supermanifolds, with an account of super-analogs of Lie derivatives, connections, metric, curvature, geodesics, Killing flows, conformal groups, etc. The book goes on to discuss the theory of super Lie groups, super Lie algebras, and invariant geometrical structures on coset spaces. Complete descriptions are given of all the simple super Lie groups. The book then turns to applications. Chapter 5 contains an account of the Peierals bracket for superclassical dynamical systems, super Hilbert spaces, path integration for fermionic quantum systems, and simple models of Bose–Fermi supersymmetry. The sixth and final chapter, which is new in this revised edition, examines dynamical systems for which the topology of the configuration supermanifold is important. A concise but complete account is given of the pathintegral derivation of the Chern–Gauss–Bonnet formula for the Euler–Poincaré characteristic of an ordinary manifold, which is based on a simple extension of a point particle moving freely in this manifold to a supersymmetric dynamical system moving in an associated supermanifold. Many exercises are included to complement the text |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xviii, 407 pages) |
ISBN: | 9780511564000 |
DOI: | 10.1017/CBO9780511564000 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043941743 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1991 |||| o||u| ||||||eng d | ||
020 | |a 9780511564000 |c Online |9 978-0-511-56400-0 | ||
024 | 7 | |a 10.1017/CBO9780511564000 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511564000 | ||
035 | |a (OCoLC)849797055 | ||
035 | |a (DE-599)BVBBV043941743 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 530.1/5 |2 20 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
100 | 1 | |a DeWitt, Bryce S. |d 1923-2004 |e Verfasser |4 aut | |
245 | 1 | 0 | |a Supermanifolds |c Bryce DeWitt |
250 | |a Second edition | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 1991 | |
300 | |a 1 online resource (xviii, 407 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on mathematical physics | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Analysis over supernumbers -- Supermanifolds -- Super Lie groups: general theory -- Super Lie groups: examples -- Selected applications of supermanifold theory -- Applications involving topolog | |
520 | |a This is an updated and expanded second edition of a successful and well-reviewed text presenting a detailed exposition of the modern theory of supermanifolds, including a rigorous account of the super-analogs of all the basic structures of ordinary manifold theory. The exposition opens with the theory of analysis over supernumbers (Grassman variables), Berezin integration, supervector spaces and the superdeterminant. This basic material is then applied to the theory of supermanifolds, with an account of super-analogs of Lie derivatives, connections, metric, curvature, geodesics, Killing flows, conformal groups, etc. The book goes on to discuss the theory of super Lie groups, super Lie algebras, and invariant geometrical structures on coset spaces. Complete descriptions are given of all the simple super Lie groups. The book then turns to applications. Chapter 5 contains an account of the Peierals bracket for superclassical dynamical systems, super Hilbert spaces, path integration for fermionic quantum systems, and simple models of Bose–Fermi supersymmetry. The sixth and final chapter, which is new in this revised edition, examines dynamical systems for which the topology of the configuration supermanifold is important. A concise but complete account is given of the pathintegral derivation of the Chern–Gauss–Bonnet formula for the Euler–Poincaré characteristic of an ordinary manifold, which is based on a simple extension of a point particle moving freely in this manifold to a supersymmetric dynamical system moving in an associated supermanifold. Many exercises are included to complement the text | ||
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Supermanifolds (Mathematics) | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Supermannigfaltigkeit |0 (DE-588)4289285-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Mannigfaltigkeit |0 (DE-588)4185712-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Topologische Mannigfaltigkeit |0 (DE-588)4185712-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Supermannigfaltigkeit |0 (DE-588)4289285-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-41320-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-42377-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511564000 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350713 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511564000 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511564000 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883860897792 |
---|---|
any_adam_object | |
author | DeWitt, Bryce S. 1923-2004 |
author_facet | DeWitt, Bryce S. 1923-2004 |
author_role | aut |
author_sort | DeWitt, Bryce S. 1923-2004 |
author_variant | b s d bs bsd |
building | Verbundindex |
bvnumber | BV043941743 |
classification_rvk | SK 350 |
collection | ZDB-20-CBO |
contents | Analysis over supernumbers -- Supermanifolds -- Super Lie groups: general theory -- Super Lie groups: examples -- Selected applications of supermanifold theory -- Applications involving topolog |
ctrlnum | (ZDB-20-CBO)CR9780511564000 (OCoLC)849797055 (DE-599)BVBBV043941743 |
dewey-full | 530.1/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1/5 |
dewey-search | 530.1/5 |
dewey-sort | 3530.1 15 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1017/CBO9780511564000 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04292nmm a2200613zc 4500</leader><controlfield tag="001">BV043941743</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511564000</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56400-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511564000</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511564000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849797055</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941743</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1/5</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">DeWitt, Bryce S.</subfield><subfield code="d">1923-2004</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Supermanifolds</subfield><subfield code="c">Bryce DeWitt</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xviii, 407 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Analysis over supernumbers -- Supermanifolds -- Super Lie groups: general theory -- Super Lie groups: examples -- Selected applications of supermanifold theory -- Applications involving topolog</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is an updated and expanded second edition of a successful and well-reviewed text presenting a detailed exposition of the modern theory of supermanifolds, including a rigorous account of the super-analogs of all the basic structures of ordinary manifold theory. The exposition opens with the theory of analysis over supernumbers (Grassman variables), Berezin integration, supervector spaces and the superdeterminant. This basic material is then applied to the theory of supermanifolds, with an account of super-analogs of Lie derivatives, connections, metric, curvature, geodesics, Killing flows, conformal groups, etc. The book goes on to discuss the theory of super Lie groups, super Lie algebras, and invariant geometrical structures on coset spaces. Complete descriptions are given of all the simple super Lie groups. The book then turns to applications. Chapter 5 contains an account of the Peierals bracket for superclassical dynamical systems, super Hilbert spaces, path integration for fermionic quantum systems, and simple models of Bose–Fermi supersymmetry. The sixth and final chapter, which is new in this revised edition, examines dynamical systems for which the topology of the configuration supermanifold is important. A concise but complete account is given of the pathintegral derivation of the Chern–Gauss–Bonnet formula for the Euler–Poincaré characteristic of an ordinary manifold, which is based on a simple extension of a point particle moving freely in this manifold to a supersymmetric dynamical system moving in an associated supermanifold. Many exercises are included to complement the text</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supermanifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Supermannigfaltigkeit</subfield><subfield code="0">(DE-588)4289285-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Supermannigfaltigkeit</subfield><subfield code="0">(DE-588)4289285-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-41320-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-42377-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511564000</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350713</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511564000</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511564000</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941743 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511564000 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350713 |
oclc_num | 849797055 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xviii, 407 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on mathematical physics |
spelling | DeWitt, Bryce S. 1923-2004 Verfasser aut Supermanifolds Bryce DeWitt Second edition Cambridge Cambridge University Press 1991 1 online resource (xviii, 407 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on mathematical physics Title from publisher's bibliographic system (viewed on 05 Oct 2015) Analysis over supernumbers -- Supermanifolds -- Super Lie groups: general theory -- Super Lie groups: examples -- Selected applications of supermanifold theory -- Applications involving topolog This is an updated and expanded second edition of a successful and well-reviewed text presenting a detailed exposition of the modern theory of supermanifolds, including a rigorous account of the super-analogs of all the basic structures of ordinary manifold theory. The exposition opens with the theory of analysis over supernumbers (Grassman variables), Berezin integration, supervector spaces and the superdeterminant. This basic material is then applied to the theory of supermanifolds, with an account of super-analogs of Lie derivatives, connections, metric, curvature, geodesics, Killing flows, conformal groups, etc. The book goes on to discuss the theory of super Lie groups, super Lie algebras, and invariant geometrical structures on coset spaces. Complete descriptions are given of all the simple super Lie groups. The book then turns to applications. Chapter 5 contains an account of the Peierals bracket for superclassical dynamical systems, super Hilbert spaces, path integration for fermionic quantum systems, and simple models of Bose–Fermi supersymmetry. The sixth and final chapter, which is new in this revised edition, examines dynamical systems for which the topology of the configuration supermanifold is important. A concise but complete account is given of the pathintegral derivation of the Chern–Gauss–Bonnet formula for the Euler–Poincaré characteristic of an ordinary manifold, which is based on a simple extension of a point particle moving freely in this manifold to a supersymmetric dynamical system moving in an associated supermanifold. Many exercises are included to complement the text Mathematische Physik Supermanifolds (Mathematics) Mathematical physics Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Supermannigfaltigkeit (DE-588)4289285-5 gnd rswk-swf Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd rswk-swf Topologische Mannigfaltigkeit (DE-588)4185712-4 s 1\p DE-604 Supermannigfaltigkeit (DE-588)4289285-5 s 2\p DE-604 Mannigfaltigkeit (DE-588)4037379-4 s 3\p DE-604 Erscheint auch als Druckausgabe 978-0-521-41320-6 Erscheint auch als Druckausgabe 978-0-521-42377-9 https://doi.org/10.1017/CBO9780511564000 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | DeWitt, Bryce S. 1923-2004 Supermanifolds Analysis over supernumbers -- Supermanifolds -- Super Lie groups: general theory -- Super Lie groups: examples -- Selected applications of supermanifold theory -- Applications involving topolog Mathematische Physik Supermanifolds (Mathematics) Mathematical physics Mannigfaltigkeit (DE-588)4037379-4 gnd Supermannigfaltigkeit (DE-588)4289285-5 gnd Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd |
subject_GND | (DE-588)4037379-4 (DE-588)4289285-5 (DE-588)4185712-4 |
title | Supermanifolds |
title_auth | Supermanifolds |
title_exact_search | Supermanifolds |
title_full | Supermanifolds Bryce DeWitt |
title_fullStr | Supermanifolds Bryce DeWitt |
title_full_unstemmed | Supermanifolds Bryce DeWitt |
title_short | Supermanifolds |
title_sort | supermanifolds |
topic | Mathematische Physik Supermanifolds (Mathematics) Mathematical physics Mannigfaltigkeit (DE-588)4037379-4 gnd Supermannigfaltigkeit (DE-588)4289285-5 gnd Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd |
topic_facet | Mathematische Physik Supermanifolds (Mathematics) Mathematical physics Mannigfaltigkeit Supermannigfaltigkeit Topologische Mannigfaltigkeit |
url | https://doi.org/10.1017/CBO9780511564000 |
work_keys_str_mv | AT dewittbryces supermanifolds |