Interval methods for systems of equations:
An interval is a natural way of specifying a number that is specified only within certain tolerances. Interval analysis consists of the tools and methods needed to solve linear and nonlinear systems of equations in the presence of data uncertainties. Applications include the sensitivity analysis of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1990
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 37 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | An interval is a natural way of specifying a number that is specified only within certain tolerances. Interval analysis consists of the tools and methods needed to solve linear and nonlinear systems of equations in the presence of data uncertainties. Applications include the sensitivity analysis of solutions of equations depending on parameters, the solution of global nonlinear problems, and the verification of results obtained by finite-precision arithmetic. In this book emphasis is laid on those aspects of the theory which are useful in actual computations. On the other hand, the theory is developed with full mathematical rigour. In order to keep the book self-contained, various results from linear algebra (Perron-Frobenius theory, M- and H- matrices) and analysis (existence of solutions to nonlinear systems) are proved, often from a novel and more general viewpoint. An extensive bibliography is included |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvi, 255 pages) |
ISBN: | 9780511526473 |
DOI: | 10.1017/CBO9780511526473 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941732 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1990 |||| o||u| ||||||eng d | ||
020 | |a 9780511526473 |c Online |9 978-0-511-52647-3 | ||
024 | 7 | |a 10.1017/CBO9780511526473 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511526473 | ||
035 | |a (OCoLC)967601443 | ||
035 | |a (DE-599)BVBBV043941732 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 519.4 |2 20 | |
084 | |a SK 905 |0 (DE-625)143269: |2 rvk | ||
084 | |a SK 910 |0 (DE-625)143270: |2 rvk | ||
084 | |a SK 915 |0 (DE-625)143271: |2 rvk | ||
100 | 1 | |a Neumaier, A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Interval methods for systems of equations |c Arnold Neumaier |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1990 | |
300 | |a 1 online resource (xvi, 255 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 37 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a An interval is a natural way of specifying a number that is specified only within certain tolerances. Interval analysis consists of the tools and methods needed to solve linear and nonlinear systems of equations in the presence of data uncertainties. Applications include the sensitivity analysis of solutions of equations depending on parameters, the solution of global nonlinear problems, and the verification of results obtained by finite-precision arithmetic. In this book emphasis is laid on those aspects of the theory which are useful in actual computations. On the other hand, the theory is developed with full mathematical rigour. In order to keep the book self-contained, various results from linear algebra (Perron-Frobenius theory, M- and H- matrices) and analysis (existence of solutions to nonlinear systems) are proved, often from a novel and more general viewpoint. An extensive bibliography is included | ||
650 | 4 | |a Interval analysis (Mathematics) | |
650 | 4 | |a Equations / Numerical solutions | |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gleichungssystem |0 (DE-588)4128766-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Intervallalgebra |0 (DE-588)4139152-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reelle Funktion |0 (DE-588)4048918-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gleichungssystem |0 (DE-588)4128766-6 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | 2 | |a Intervallalgebra |0 (DE-588)4139152-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Reelle Funktion |0 (DE-588)4048918-8 |D s |
689 | 1 | 1 | |a Intervallalgebra |0 (DE-588)4139152-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-10214-8 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-33196-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511526473 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350702 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511526473 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511526473 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883845169152 |
---|---|
any_adam_object | |
author | Neumaier, A. |
author_facet | Neumaier, A. |
author_role | aut |
author_sort | Neumaier, A. |
author_variant | a n an |
building | Verbundindex |
bvnumber | BV043941732 |
classification_rvk | SK 905 SK 910 SK 915 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511526473 (OCoLC)967601443 (DE-599)BVBBV043941732 |
dewey-full | 519.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.4 |
dewey-search | 519.4 |
dewey-sort | 3519.4 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511526473 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03469nmm a2200613zcb4500</leader><controlfield tag="001">BV043941732</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526473</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-52647-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511526473</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511526473</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967601443</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941732</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.4</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 905</subfield><subfield code="0">(DE-625)143269:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 910</subfield><subfield code="0">(DE-625)143270:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 915</subfield><subfield code="0">(DE-625)143271:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Neumaier, A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interval methods for systems of equations</subfield><subfield code="c">Arnold Neumaier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 255 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 37</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An interval is a natural way of specifying a number that is specified only within certain tolerances. Interval analysis consists of the tools and methods needed to solve linear and nonlinear systems of equations in the presence of data uncertainties. Applications include the sensitivity analysis of solutions of equations depending on parameters, the solution of global nonlinear problems, and the verification of results obtained by finite-precision arithmetic. In this book emphasis is laid on those aspects of the theory which are useful in actual computations. On the other hand, the theory is developed with full mathematical rigour. In order to keep the book self-contained, various results from linear algebra (Perron-Frobenius theory, M- and H- matrices) and analysis (existence of solutions to nonlinear systems) are proved, often from a novel and more general viewpoint. An extensive bibliography is included</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interval analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equations / Numerical solutions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gleichungssystem</subfield><subfield code="0">(DE-588)4128766-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Intervallalgebra</subfield><subfield code="0">(DE-588)4139152-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reelle Funktion</subfield><subfield code="0">(DE-588)4048918-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gleichungssystem</subfield><subfield code="0">(DE-588)4128766-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Intervallalgebra</subfield><subfield code="0">(DE-588)4139152-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Reelle Funktion</subfield><subfield code="0">(DE-588)4048918-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Intervallalgebra</subfield><subfield code="0">(DE-588)4139152-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-10214-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-33196-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511526473</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350702</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526473</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526473</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941732 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511526473 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350702 |
oclc_num | 967601443 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvi, 255 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Neumaier, A. Verfasser aut Interval methods for systems of equations Arnold Neumaier Cambridge Cambridge University Press 1990 1 online resource (xvi, 255 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 37 Title from publisher's bibliographic system (viewed on 05 Oct 2015) An interval is a natural way of specifying a number that is specified only within certain tolerances. Interval analysis consists of the tools and methods needed to solve linear and nonlinear systems of equations in the presence of data uncertainties. Applications include the sensitivity analysis of solutions of equations depending on parameters, the solution of global nonlinear problems, and the verification of results obtained by finite-precision arithmetic. In this book emphasis is laid on those aspects of the theory which are useful in actual computations. On the other hand, the theory is developed with full mathematical rigour. In order to keep the book self-contained, various results from linear algebra (Perron-Frobenius theory, M- and H- matrices) and analysis (existence of solutions to nonlinear systems) are proved, often from a novel and more general viewpoint. An extensive bibliography is included Interval analysis (Mathematics) Equations / Numerical solutions Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Gleichungssystem (DE-588)4128766-6 gnd rswk-swf Intervallalgebra (DE-588)4139152-4 gnd rswk-swf Reelle Funktion (DE-588)4048918-8 gnd rswk-swf Gleichungssystem (DE-588)4128766-6 s Numerisches Verfahren (DE-588)4128130-5 s Intervallalgebra (DE-588)4139152-4 s 1\p DE-604 Reelle Funktion (DE-588)4048918-8 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-10214-8 Erscheint auch als Druckausgabe 978-0-521-33196-8 https://doi.org/10.1017/CBO9780511526473 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Neumaier, A. Interval methods for systems of equations Interval analysis (Mathematics) Equations / Numerical solutions Numerisches Verfahren (DE-588)4128130-5 gnd Gleichungssystem (DE-588)4128766-6 gnd Intervallalgebra (DE-588)4139152-4 gnd Reelle Funktion (DE-588)4048918-8 gnd |
subject_GND | (DE-588)4128130-5 (DE-588)4128766-6 (DE-588)4139152-4 (DE-588)4048918-8 |
title | Interval methods for systems of equations |
title_auth | Interval methods for systems of equations |
title_exact_search | Interval methods for systems of equations |
title_full | Interval methods for systems of equations Arnold Neumaier |
title_fullStr | Interval methods for systems of equations Arnold Neumaier |
title_full_unstemmed | Interval methods for systems of equations Arnold Neumaier |
title_short | Interval methods for systems of equations |
title_sort | interval methods for systems of equations |
topic | Interval analysis (Mathematics) Equations / Numerical solutions Numerisches Verfahren (DE-588)4128130-5 gnd Gleichungssystem (DE-588)4128766-6 gnd Intervallalgebra (DE-588)4139152-4 gnd Reelle Funktion (DE-588)4048918-8 gnd |
topic_facet | Interval analysis (Mathematics) Equations / Numerical solutions Numerisches Verfahren Gleichungssystem Intervallalgebra Reelle Funktion |
url | https://doi.org/10.1017/CBO9780511526473 |
work_keys_str_mv | AT neumaiera intervalmethodsforsystemsofequations |