Lower K- and L-theory:
This is the first unified treatment in book form of the lower K-groups of Bass and the lower L-groups of the author. These groups arise as the Grothendieck groups of modules and quadratic forms which are components of the K- and L-groups of polynomial extensions. They are important in the topology o...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1992
|
Schriftenreihe: | London Mathematical Society lecture note series
178 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This is the first unified treatment in book form of the lower K-groups of Bass and the lower L-groups of the author. These groups arise as the Grothendieck groups of modules and quadratic forms which are components of the K- and L-groups of polynomial extensions. They are important in the topology of non-compact manifolds such as Euclidean spaces, being the value groups for Whitehead torsion, the Siebemann end obstruction and the Wall finiteness and surgery obstructions. Some of the applications to topology are included, such as the obstruction theories for splitting homotopy equivalences and for fibering compact manifolds over the circle. Only elementary algebraic constructions are used, which are always motivated by topology. The material is accessible to a wide mathematical audience, especially graduate students and research workers in topology and algebra |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (174 pages) |
ISBN: | 9780511526329 |
DOI: | 10.1017/CBO9780511526329 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941731 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1992 |||| o||u| ||||||eng d | ||
020 | |a 9780511526329 |c Online |9 978-0-511-52632-9 | ||
024 | 7 | |a 10.1017/CBO9780511526329 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511526329 | ||
035 | |a (OCoLC)967602037 | ||
035 | |a (DE-599)BVBBV043941731 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 514/.23 |2 20 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Ranicki, Andrew |d 1948- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lower K- and L-theory |c Andrew Ranicki |
246 | 1 | 3 | |a Lower K- & L-theory |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1992 | |
300 | |a 1 online resource (174 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 178 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This is the first unified treatment in book form of the lower K-groups of Bass and the lower L-groups of the author. These groups arise as the Grothendieck groups of modules and quadratic forms which are components of the K- and L-groups of polynomial extensions. They are important in the topology of non-compact manifolds such as Euclidean spaces, being the value groups for Whitehead torsion, the Siebemann end obstruction and the Wall finiteness and surgery obstructions. Some of the applications to topology are included, such as the obstruction theories for splitting homotopy equivalences and for fibering compact manifolds over the circle. Only elementary algebraic constructions are used, which are always motivated by topology. The material is accessible to a wide mathematical audience, especially graduate students and research workers in topology and algebra | ||
650 | 4 | |a K-theory | |
650 | 0 | 7 | |a K-Theorie |0 (DE-588)4033335-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a K-Theorie |0 (DE-588)4033335-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-43801-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511526329 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350701 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511526329 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511526329 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883842023424 |
---|---|
any_adam_object | |
author | Ranicki, Andrew 1948- |
author_facet | Ranicki, Andrew 1948- |
author_role | aut |
author_sort | Ranicki, Andrew 1948- |
author_variant | a r ar |
building | Verbundindex |
bvnumber | BV043941731 |
classification_rvk | SI 320 SK 230 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511526329 (OCoLC)967602037 (DE-599)BVBBV043941731 |
dewey-full | 514/.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.23 |
dewey-search | 514/.23 |
dewey-sort | 3514 223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511526329 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02695nmm a2200481zcb4500</leader><controlfield tag="001">BV043941731</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526329</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-52632-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511526329</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511526329</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967602037</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941731</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.23</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ranicki, Andrew</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lower K- and L-theory</subfield><subfield code="c">Andrew Ranicki</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Lower K- & L-theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (174 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">178</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is the first unified treatment in book form of the lower K-groups of Bass and the lower L-groups of the author. These groups arise as the Grothendieck groups of modules and quadratic forms which are components of the K- and L-groups of polynomial extensions. They are important in the topology of non-compact manifolds such as Euclidean spaces, being the value groups for Whitehead torsion, the Siebemann end obstruction and the Wall finiteness and surgery obstructions. Some of the applications to topology are included, such as the obstruction theories for splitting homotopy equivalences and for fibering compact manifolds over the circle. Only elementary algebraic constructions are used, which are always motivated by topology. The material is accessible to a wide mathematical audience, especially graduate students and research workers in topology and algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">K-Theorie</subfield><subfield code="0">(DE-588)4033335-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">K-Theorie</subfield><subfield code="0">(DE-588)4033335-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-43801-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511526329</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350701</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526329</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526329</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941731 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511526329 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350701 |
oclc_num | 967602037 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (174 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Ranicki, Andrew 1948- Verfasser aut Lower K- and L-theory Andrew Ranicki Lower K- & L-theory Cambridge Cambridge University Press 1992 1 online resource (174 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 178 Title from publisher's bibliographic system (viewed on 05 Oct 2015) This is the first unified treatment in book form of the lower K-groups of Bass and the lower L-groups of the author. These groups arise as the Grothendieck groups of modules and quadratic forms which are components of the K- and L-groups of polynomial extensions. They are important in the topology of non-compact manifolds such as Euclidean spaces, being the value groups for Whitehead torsion, the Siebemann end obstruction and the Wall finiteness and surgery obstructions. Some of the applications to topology are included, such as the obstruction theories for splitting homotopy equivalences and for fibering compact manifolds over the circle. Only elementary algebraic constructions are used, which are always motivated by topology. The material is accessible to a wide mathematical audience, especially graduate students and research workers in topology and algebra K-theory K-Theorie (DE-588)4033335-8 gnd rswk-swf K-Theorie (DE-588)4033335-8 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-43801-8 https://doi.org/10.1017/CBO9780511526329 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ranicki, Andrew 1948- Lower K- and L-theory K-theory K-Theorie (DE-588)4033335-8 gnd |
subject_GND | (DE-588)4033335-8 |
title | Lower K- and L-theory |
title_alt | Lower K- & L-theory |
title_auth | Lower K- and L-theory |
title_exact_search | Lower K- and L-theory |
title_full | Lower K- and L-theory Andrew Ranicki |
title_fullStr | Lower K- and L-theory Andrew Ranicki |
title_full_unstemmed | Lower K- and L-theory Andrew Ranicki |
title_short | Lower K- and L-theory |
title_sort | lower k and l theory |
topic | K-theory K-Theorie (DE-588)4033335-8 gnd |
topic_facet | K-theory K-Theorie |
url | https://doi.org/10.1017/CBO9780511526329 |
work_keys_str_mv | AT ranickiandrew lowerkandltheory AT ranickiandrew lowerkltheory |