Discrete and continuous nonlinear Schrödinger systems:
In recent years there have been important and far reaching developments in the study of nonlinear waves and a class of nonlinear wave equations which arise frequently in applications. The wide interest in this field comes from the understanding of special waves called 'solitons' and the as...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2004
|
Schriftenreihe: | London Mathematical Society lecture note series
302 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | In recent years there have been important and far reaching developments in the study of nonlinear waves and a class of nonlinear wave equations which arise frequently in applications. The wide interest in this field comes from the understanding of special waves called 'solitons' and the associated development of a method of solution to a class of nonlinear wave equations termed the inverse scattering transform (IST). Before these developments, very little was known about the solutions to such 'soliton equations'. The IST technique applies to both continuous and discrete nonlinear Schrödinger equations of scalar and vector type. Also included is the IST for the Toda lattice and nonlinear ladder network, which are well-known discrete systems. This book, first published in 2003, presents the detailed mathematical analysis of the scattering theory; soliton solutions are obtained and soliton interactions, both scalar and vector, are analyzed. Much of the material is not available in the previously-published literature |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (ix, 257 pages) |
ISBN: | 9780511546709 |
DOI: | 10.1017/CBO9780511546709 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941726 | ||
003 | DE-604 | ||
005 | 20170720 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2004 |||| o||u| ||||||eng d | ||
020 | |a 9780511546709 |c Online |9 978-0-511-54670-9 | ||
024 | 7 | |a 10.1017/CBO9780511546709 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511546709 | ||
035 | |a (OCoLC)699180033 | ||
035 | |a (DE-599)BVBBV043941726 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 530.12/4 |2 21 | |
100 | 1 | |a Ablowitz, Mark J. |d 1945- |e Verfasser |0 (DE-588)143611844 |4 aut | |
245 | 1 | 0 | |a Discrete and continuous nonlinear Schrödinger systems |c M.J. Ablowitz, B. Prinari, A.D. Trubatch |
246 | 1 | 3 | |a Discrete & Continuous Nonlinear Schrödinger Systems |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2004 | |
300 | |a 1 online resource (ix, 257 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 302 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |g 1 |t Introduction |g 2 |t Nonlinear Schrḏinger equation (NLS) |g 3 |t Integrable discrete nonlinear Schrḏinger equation (IDNLS) |g 4 |t Matrix nonlinear Schrḏinger equation (MNLS) |g 5 |t Integrable discrete matrix NLS equation (IDMNLS) |
520 | |a In recent years there have been important and far reaching developments in the study of nonlinear waves and a class of nonlinear wave equations which arise frequently in applications. The wide interest in this field comes from the understanding of special waves called 'solitons' and the associated development of a method of solution to a class of nonlinear wave equations termed the inverse scattering transform (IST). Before these developments, very little was known about the solutions to such 'soliton equations'. The IST technique applies to both continuous and discrete nonlinear Schrödinger equations of scalar and vector type. Also included is the IST for the Toda lattice and nonlinear ladder network, which are well-known discrete systems. This book, first published in 2003, presents the detailed mathematical analysis of the scattering theory; soliton solutions are obtained and soliton interactions, both scalar and vector, are analyzed. Much of the material is not available in the previously-published literature | ||
650 | 4 | |a Schrödinger equation | |
650 | 4 | |a Nonlinear theories | |
650 | 4 | |a Inverse scattering transform | |
650 | 0 | 7 | |a Inverse Streutheorie |0 (DE-588)4561758-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Schrödinger-Gleichung |0 (DE-588)4278277-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Schrödinger-Gleichung |0 (DE-588)4278277-6 |D s |
689 | 0 | 1 | |a Inverse Streutheorie |0 (DE-588)4561758-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Prinari, Barbara |d 1972- |e Sonstige |0 (DE-588)143612328 |4 oth | |
700 | 1 | |a Trubatch, A. D. |d 1968- |e Sonstige |0 (DE-588)143612468 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-53437-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511546709 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350696 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511546709 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511546709 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883829440512 |
---|---|
any_adam_object | |
author | Ablowitz, Mark J. 1945- |
author_GND | (DE-588)143611844 (DE-588)143612328 (DE-588)143612468 |
author_facet | Ablowitz, Mark J. 1945- |
author_role | aut |
author_sort | Ablowitz, Mark J. 1945- |
author_variant | m j a mj mja |
building | Verbundindex |
bvnumber | BV043941726 |
collection | ZDB-20-CBO |
contents | Introduction Nonlinear Schrḏinger equation (NLS) Integrable discrete nonlinear Schrḏinger equation (IDNLS) Matrix nonlinear Schrḏinger equation (MNLS) Integrable discrete matrix NLS equation (IDMNLS) |
ctrlnum | (ZDB-20-CBO)CR9780511546709 (OCoLC)699180033 (DE-599)BVBBV043941726 |
dewey-full | 530.12/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12/4 |
dewey-search | 530.12/4 |
dewey-sort | 3530.12 14 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1017/CBO9780511546709 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03544nmm a2200541zcb4500</leader><controlfield tag="001">BV043941726</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170720 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511546709</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54670-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511546709</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511546709</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)699180033</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941726</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12/4</subfield><subfield code="2">21</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ablowitz, Mark J.</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143611844</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discrete and continuous nonlinear Schrödinger systems</subfield><subfield code="c">M.J. Ablowitz, B. Prinari, A.D. Trubatch</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Discrete & Continuous Nonlinear Schrödinger Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 257 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">302</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="g">1</subfield><subfield code="t">Introduction</subfield><subfield code="g">2</subfield><subfield code="t">Nonlinear Schrḏinger equation (NLS)</subfield><subfield code="g">3</subfield><subfield code="t">Integrable discrete nonlinear Schrḏinger equation (IDNLS)</subfield><subfield code="g">4</subfield><subfield code="t">Matrix nonlinear Schrḏinger equation (MNLS)</subfield><subfield code="g">5</subfield><subfield code="t">Integrable discrete matrix NLS equation (IDMNLS)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent years there have been important and far reaching developments in the study of nonlinear waves and a class of nonlinear wave equations which arise frequently in applications. The wide interest in this field comes from the understanding of special waves called 'solitons' and the associated development of a method of solution to a class of nonlinear wave equations termed the inverse scattering transform (IST). Before these developments, very little was known about the solutions to such 'soliton equations'. The IST technique applies to both continuous and discrete nonlinear Schrödinger equations of scalar and vector type. Also included is the IST for the Toda lattice and nonlinear ladder network, which are well-known discrete systems. This book, first published in 2003, presents the detailed mathematical analysis of the scattering theory; soliton solutions are obtained and soliton interactions, both scalar and vector, are analyzed. Much of the material is not available in the previously-published literature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schrödinger equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear theories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverse scattering transform</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inverse Streutheorie</subfield><subfield code="0">(DE-588)4561758-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Schrödinger-Gleichung</subfield><subfield code="0">(DE-588)4278277-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Schrödinger-Gleichung</subfield><subfield code="0">(DE-588)4278277-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Inverse Streutheorie</subfield><subfield code="0">(DE-588)4561758-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prinari, Barbara</subfield><subfield code="d">1972-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)143612328</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trubatch, A. D.</subfield><subfield code="d">1968-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)143612468</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-53437-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511546709</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350696</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546709</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546709</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941726 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511546709 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350696 |
oclc_num | 699180033 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (ix, 257 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Ablowitz, Mark J. 1945- Verfasser (DE-588)143611844 aut Discrete and continuous nonlinear Schrödinger systems M.J. Ablowitz, B. Prinari, A.D. Trubatch Discrete & Continuous Nonlinear Schrödinger Systems Cambridge Cambridge University Press 2004 1 online resource (ix, 257 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 302 Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1 Introduction 2 Nonlinear Schrḏinger equation (NLS) 3 Integrable discrete nonlinear Schrḏinger equation (IDNLS) 4 Matrix nonlinear Schrḏinger equation (MNLS) 5 Integrable discrete matrix NLS equation (IDMNLS) In recent years there have been important and far reaching developments in the study of nonlinear waves and a class of nonlinear wave equations which arise frequently in applications. The wide interest in this field comes from the understanding of special waves called 'solitons' and the associated development of a method of solution to a class of nonlinear wave equations termed the inverse scattering transform (IST). Before these developments, very little was known about the solutions to such 'soliton equations'. The IST technique applies to both continuous and discrete nonlinear Schrödinger equations of scalar and vector type. Also included is the IST for the Toda lattice and nonlinear ladder network, which are well-known discrete systems. This book, first published in 2003, presents the detailed mathematical analysis of the scattering theory; soliton solutions are obtained and soliton interactions, both scalar and vector, are analyzed. Much of the material is not available in the previously-published literature Schrödinger equation Nonlinear theories Inverse scattering transform Inverse Streutheorie (DE-588)4561758-2 gnd rswk-swf Nichtlineare Schrödinger-Gleichung (DE-588)4278277-6 gnd rswk-swf Nichtlineare Schrödinger-Gleichung (DE-588)4278277-6 s Inverse Streutheorie (DE-588)4561758-2 s 1\p DE-604 Prinari, Barbara 1972- Sonstige (DE-588)143612328 oth Trubatch, A. D. 1968- Sonstige (DE-588)143612468 oth Erscheint auch als Druckausgabe 978-0-521-53437-6 https://doi.org/10.1017/CBO9780511546709 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ablowitz, Mark J. 1945- Discrete and continuous nonlinear Schrödinger systems Introduction Nonlinear Schrḏinger equation (NLS) Integrable discrete nonlinear Schrḏinger equation (IDNLS) Matrix nonlinear Schrḏinger equation (MNLS) Integrable discrete matrix NLS equation (IDMNLS) Schrödinger equation Nonlinear theories Inverse scattering transform Inverse Streutheorie (DE-588)4561758-2 gnd Nichtlineare Schrödinger-Gleichung (DE-588)4278277-6 gnd |
subject_GND | (DE-588)4561758-2 (DE-588)4278277-6 |
title | Discrete and continuous nonlinear Schrödinger systems |
title_alt | Discrete & Continuous Nonlinear Schrödinger Systems Introduction Nonlinear Schrḏinger equation (NLS) Integrable discrete nonlinear Schrḏinger equation (IDNLS) Matrix nonlinear Schrḏinger equation (MNLS) Integrable discrete matrix NLS equation (IDMNLS) |
title_auth | Discrete and continuous nonlinear Schrödinger systems |
title_exact_search | Discrete and continuous nonlinear Schrödinger systems |
title_full | Discrete and continuous nonlinear Schrödinger systems M.J. Ablowitz, B. Prinari, A.D. Trubatch |
title_fullStr | Discrete and continuous nonlinear Schrödinger systems M.J. Ablowitz, B. Prinari, A.D. Trubatch |
title_full_unstemmed | Discrete and continuous nonlinear Schrödinger systems M.J. Ablowitz, B. Prinari, A.D. Trubatch |
title_short | Discrete and continuous nonlinear Schrödinger systems |
title_sort | discrete and continuous nonlinear schrodinger systems |
topic | Schrödinger equation Nonlinear theories Inverse scattering transform Inverse Streutheorie (DE-588)4561758-2 gnd Nichtlineare Schrödinger-Gleichung (DE-588)4278277-6 gnd |
topic_facet | Schrödinger equation Nonlinear theories Inverse scattering transform Inverse Streutheorie Nichtlineare Schrödinger-Gleichung |
url | https://doi.org/10.1017/CBO9780511546709 |
work_keys_str_mv | AT ablowitzmarkj discreteandcontinuousnonlinearschrodingersystems AT prinaribarbara discreteandcontinuousnonlinearschrodingersystems AT trubatchad discreteandcontinuousnonlinearschrodingersystems AT ablowitzmarkj discretecontinuousnonlinearschrodingersystems AT prinaribarbara discretecontinuousnonlinearschrodingersystems AT trubatchad discretecontinuousnonlinearschrodingersystems |