Multivalent functions:
The class of multivalent functions is an important one in complex analysis. They occur for example in the proof of De Branges' theorem which, in 1985, settled the long-standing Bieberbach conjecture. The second edition of Professor Hayman's celebrated book contains a full and self-containe...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1994
|
Ausgabe: | Second edition |
Schriftenreihe: | Cambridge tracts in mathematics
110 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | The class of multivalent functions is an important one in complex analysis. They occur for example in the proof of De Branges' theorem which, in 1985, settled the long-standing Bieberbach conjecture. The second edition of Professor Hayman's celebrated book contains a full and self-contained proof of this result, with a chapter devoted to it. Another chapter deals with coefficient differences. It has been updated in several other ways, with theorems of Baernstein and Pommerenke on univalent functions of restricted growth, and an account of the theory of mean p-valent functions. In addition, many of the original proofs have been simplified. Each chapter contains examples and exercises of varying degrees of difficulty designed both to test understanding and illustrate the material. Consequently it will be useful for graduate students, and essential for specialists in complex function theory |
Beschreibung: | 1 Online-Ressource (xii, 263 Seiten) |
ISBN: | 9780511526268 |
DOI: | 10.1017/CBO9780511526268 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941717 | ||
003 | DE-604 | ||
005 | 20190329 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1994 |||| o||u| ||||||eng d | ||
020 | |a 9780511526268 |c Online |9 978-0-511-52626-8 | ||
024 | 7 | |a 10.1017/CBO9780511526268 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511526268 | ||
035 | |a (OCoLC)849891692 | ||
035 | |a (DE-599)BVBBV043941717 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 515.9 |2 20 | |
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
084 | |a SK 700 |0 (DE-625)143253: |2 rvk | ||
100 | 1 | |a Hayman, Walter K. |d 1926-2020 |e Verfasser |0 (DE-588)123030889 |4 aut | |
245 | 1 | 0 | |a Multivalent functions |c W.K. Hayman |
250 | |a Second edition | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 1994 | |
300 | |a 1 Online-Ressource (xii, 263 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 110 | |
520 | |a The class of multivalent functions is an important one in complex analysis. They occur for example in the proof of De Branges' theorem which, in 1985, settled the long-standing Bieberbach conjecture. The second edition of Professor Hayman's celebrated book contains a full and self-contained proof of this result, with a chapter devoted to it. Another chapter deals with coefficient differences. It has been updated in several other ways, with theorems of Baernstein and Pommerenke on univalent functions of restricted growth, and an account of the theory of mean p-valent functions. In addition, many of the original proofs have been simplified. Each chapter contains examples and exercises of varying degrees of difficulty designed both to test understanding and illustrate the material. Consequently it will be useful for graduate students, and essential for specialists in complex function theory | ||
650 | 4 | |a Functions | |
650 | 0 | 7 | |a Schlichte Funktion |0 (DE-588)4131418-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrwertige Funktion |0 (DE-588)4409125-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Schlichte Funktion |0 (DE-588)4131418-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mehrwertige Funktion |0 (DE-588)4409125-4 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-46026-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-05767-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511526268 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350687 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511526268 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511526268 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511526268 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883818954752 |
---|---|
any_adam_object | |
author | Hayman, Walter K. 1926-2020 |
author_GND | (DE-588)123030889 |
author_facet | Hayman, Walter K. 1926-2020 |
author_role | aut |
author_sort | Hayman, Walter K. 1926-2020 |
author_variant | w k h wk wkh |
building | Verbundindex |
bvnumber | BV043941717 |
classification_rvk | SK 750 SK 700 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511526268 (OCoLC)849891692 (DE-599)BVBBV043941717 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511526268 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02951nmm a2200517zcb4500</leader><controlfield tag="001">BV043941717</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190329 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526268</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-52626-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511526268</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511526268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849891692</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941717</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 700</subfield><subfield code="0">(DE-625)143253:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hayman, Walter K.</subfield><subfield code="d">1926-2020</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123030889</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multivalent functions</subfield><subfield code="c">W.K. Hayman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 263 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">110</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The class of multivalent functions is an important one in complex analysis. They occur for example in the proof of De Branges' theorem which, in 1985, settled the long-standing Bieberbach conjecture. The second edition of Professor Hayman's celebrated book contains a full and self-contained proof of this result, with a chapter devoted to it. Another chapter deals with coefficient differences. It has been updated in several other ways, with theorems of Baernstein and Pommerenke on univalent functions of restricted growth, and an account of the theory of mean p-valent functions. In addition, many of the original proofs have been simplified. Each chapter contains examples and exercises of varying degrees of difficulty designed both to test understanding and illustrate the material. Consequently it will be useful for graduate students, and essential for specialists in complex function theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schlichte Funktion</subfield><subfield code="0">(DE-588)4131418-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrwertige Funktion</subfield><subfield code="0">(DE-588)4409125-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Schlichte Funktion</subfield><subfield code="0">(DE-588)4131418-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mehrwertige Funktion</subfield><subfield code="0">(DE-588)4409125-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-46026-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-05767-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511526268</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350687</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526268</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526268</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526268</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941717 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511526268 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350687 |
oclc_num | 849891692 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xii, 263 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Hayman, Walter K. 1926-2020 Verfasser (DE-588)123030889 aut Multivalent functions W.K. Hayman Second edition Cambridge Cambridge University Press 1994 1 Online-Ressource (xii, 263 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 110 The class of multivalent functions is an important one in complex analysis. They occur for example in the proof of De Branges' theorem which, in 1985, settled the long-standing Bieberbach conjecture. The second edition of Professor Hayman's celebrated book contains a full and self-contained proof of this result, with a chapter devoted to it. Another chapter deals with coefficient differences. It has been updated in several other ways, with theorems of Baernstein and Pommerenke on univalent functions of restricted growth, and an account of the theory of mean p-valent functions. In addition, many of the original proofs have been simplified. Each chapter contains examples and exercises of varying degrees of difficulty designed both to test understanding and illustrate the material. Consequently it will be useful for graduate students, and essential for specialists in complex function theory Functions Schlichte Funktion (DE-588)4131418-9 gnd rswk-swf Mehrwertige Funktion (DE-588)4409125-4 gnd rswk-swf Schlichte Funktion (DE-588)4131418-9 s DE-604 Mehrwertige Funktion (DE-588)4409125-4 s Erscheint auch als Druck-Ausgabe 978-0-521-46026-2 Erscheint auch als Druck-Ausgabe 978-0-521-05767-7 https://doi.org/10.1017/CBO9780511526268 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Hayman, Walter K. 1926-2020 Multivalent functions Functions Schlichte Funktion (DE-588)4131418-9 gnd Mehrwertige Funktion (DE-588)4409125-4 gnd |
subject_GND | (DE-588)4131418-9 (DE-588)4409125-4 |
title | Multivalent functions |
title_auth | Multivalent functions |
title_exact_search | Multivalent functions |
title_full | Multivalent functions W.K. Hayman |
title_fullStr | Multivalent functions W.K. Hayman |
title_full_unstemmed | Multivalent functions W.K. Hayman |
title_short | Multivalent functions |
title_sort | multivalent functions |
topic | Functions Schlichte Funktion (DE-588)4131418-9 gnd Mehrwertige Funktion (DE-588)4409125-4 gnd |
topic_facet | Functions Schlichte Funktion Mehrwertige Funktion |
url | https://doi.org/10.1017/CBO9780511526268 |
work_keys_str_mv | AT haymanwalterk multivalentfunctions |