Orthogonal polynomials of several variables:
Serving both as an introduction to the subject and as a reference, this book presents the theory in elegant form and with modern concepts and notation. It covers the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains....
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2014
|
Ausgabe: | Second edition |
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 155 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Serving both as an introduction to the subject and as a reference, this book presents the theory in elegant form and with modern concepts and notation. It covers the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains. The approach is a blend of classical analysis and symmetry group theoretic methods. Finite reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. This revised edition has been updated throughout to reflect recent developments in the field. It contains 25% new material, including two brand new chapters on orthogonal polynomials in two variables, which will be especially useful for applications, and orthogonal polynomials on the unit sphere. The most modern and complete treatment of the subject available, it will be useful to a wide audience of mathematicians and applied scientists, including physicists, chemists and engineers |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvii, 420 pages) |
ISBN: | 9781107786134 |
DOI: | 10.1017/CBO9781107786134 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941704 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781107786134 |c Online |9 978-1-107-78613-4 | ||
024 | 7 | |a 10.1017/CBO9781107786134 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107786134 | ||
035 | |a (OCoLC)992914272 | ||
035 | |a (DE-599)BVBBV043941704 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.55 |2 23 | |
084 | |a SK 470 |0 (DE-625)143241: |2 rvk | ||
100 | 1 | |a Dunkl, Charles F. |d 1941- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Orthogonal polynomials of several variables |c Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon |
250 | |a Second edition | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 2014 | |
300 | |a 1 online resource (xvii, 420 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 155 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a 1. Background -- The gamma and beta functions -- Hypergeometric series -- Orthogonal polynomials of one variable -- Classical orthogonal polynomials -- Modified classical polynomials -- Notes -- 2. Orthogonal polynomials in two variables -- Introduction -- Product orthogonal polynomials -- Orthogonal polynomials on the unit disk -- Orthogonal polynomials on the triangle -- Orthogonal polynomials and differential equations -- Generating orthogonal polynomials of two variables -- First family of koornwinder polynomials -- A related family of orthogonal polynomials -- Second family of koornwinder polynomials -- 3. General properties of orthogonal polynomials in several variables -- Notation and preliminaries -- Moment funtionals and orthogonal polynomials -- The three-term relation -- Jacobi matrices and commuting operators -- Further properties of the three-term relation -- Reproducing kernels and fourier orthogonal series -- | |
505 | 8 | |a Common zeros of orthogonal polynomials in several variables -- Gaussian cubature formulae -- Notes -- 4. Orthogonal polynomials on the unit sphere -- Spherical harmonics -- Orthoginal structures on Sd and on Bd -- Orthogonal structures on Bd and on Sd+m-1 -- Orthogonal structure on the simplex -- Van der corput -- Schaake inequality -- 5. Examples of orthogonal polynomials in several variables -- Orthogonal polynomials for simple weight functions -- Classical orthogonal polynomials on the unit ball -- Classical orthogonal polynomials on the simplex -- Orthogonal polynomials via symmetric functions -- Chebyshev polynomials to Type Ad -- Sobolev orthogonal polynomials on the unit ball -- 6. Root systems and coxeter groups -- Introduction and overview -- Root systems -- Invariant polynomials -- Differential-difference operators -- The intertwining operator -- The K-analogue of the exponential -- Invariant differential operators -- | |
505 | 8 | |a 7. Spherical harmonics associated with reflection groups -- h-Harmonic polynomials -- Inner products on polynomials -- Reproducing kernels and the poisson kernel -- Integration of the intertwining operator -- Example: Abelian group Z d/2 -- Example: Dihedral groups -- The dunk1 transform -- 8. Generalized classical orthogonal polynomials -- Generalized classical orthogonal polynomials on the ball -- Generalized classical orthogonal polynomials on the simplex -- Generalized hermite polynomials -- Generalized laguerre polynomials -- 9. Summability of orthogonal expansions -- General results on orthogonal expansions -- Orthogonal expansion on the sphere -- Orthogonal expansion on the ball -- Orthogonal expansion on the simplex -- Orthogonal expansion of Laguerre and Hermite polynomials -- Multiple Jacobi expansion -- 10. Orthogonal polynomials associated with symmetric groups -- Partitions, compositions and orderings -- Commuting self-adjoint operators -- The dual polynomials basis -- | |
505 | 8 | |a Sd-invariant subspaces -- Degree-changing recurrences -- Norm formulae -- Symmetric functions and jack polynomials -- Miscellaneous topics -- 11. Orthogonal polynomials associated with octahedral groups, and applications -- Operators of Type B -- Polynomial eigenfunctions of Type B -- Generalized binomial coefficients -- Hermite polynomials of Type B -- Calogero-Sutherland systems | |
520 | |a Serving both as an introduction to the subject and as a reference, this book presents the theory in elegant form and with modern concepts and notation. It covers the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains. The approach is a blend of classical analysis and symmetry group theoretic methods. Finite reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. This revised edition has been updated throughout to reflect recent developments in the field. It contains 25% new material, including two brand new chapters on orthogonal polynomials in two variables, which will be especially useful for applications, and orthogonal polynomials on the unit sphere. The most modern and complete treatment of the subject available, it will be useful to a wide audience of mathematicians and applied scientists, including physicists, chemists and engineers | ||
650 | 4 | |a Orthogonal polynomials | |
650 | 4 | |a Functions of several real variables | |
650 | 0 | 7 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrere Variable |0 (DE-588)4277015-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |D s |
689 | 0 | 1 | |a Mehrere Variable |0 (DE-588)4277015-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Xu, Yuan |d 1957- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-07189-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781107786134 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350674 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781107786134 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107786134 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883786448896 |
---|---|
any_adam_object | |
author | Dunkl, Charles F. 1941- |
author_facet | Dunkl, Charles F. 1941- |
author_role | aut |
author_sort | Dunkl, Charles F. 1941- |
author_variant | c f d cf cfd |
building | Verbundindex |
bvnumber | BV043941704 |
classification_rvk | SK 470 |
collection | ZDB-20-CBO |
contents | 1. Background -- The gamma and beta functions -- Hypergeometric series -- Orthogonal polynomials of one variable -- Classical orthogonal polynomials -- Modified classical polynomials -- Notes -- 2. Orthogonal polynomials in two variables -- Introduction -- Product orthogonal polynomials -- Orthogonal polynomials on the unit disk -- Orthogonal polynomials on the triangle -- Orthogonal polynomials and differential equations -- Generating orthogonal polynomials of two variables -- First family of koornwinder polynomials -- A related family of orthogonal polynomials -- Second family of koornwinder polynomials -- 3. General properties of orthogonal polynomials in several variables -- Notation and preliminaries -- Moment funtionals and orthogonal polynomials -- The three-term relation -- Jacobi matrices and commuting operators -- Further properties of the three-term relation -- Reproducing kernels and fourier orthogonal series -- Common zeros of orthogonal polynomials in several variables -- Gaussian cubature formulae -- Notes -- 4. Orthogonal polynomials on the unit sphere -- Spherical harmonics -- Orthoginal structures on Sd and on Bd -- Orthogonal structures on Bd and on Sd+m-1 -- Orthogonal structure on the simplex -- Van der corput -- Schaake inequality -- 5. Examples of orthogonal polynomials in several variables -- Orthogonal polynomials for simple weight functions -- Classical orthogonal polynomials on the unit ball -- Classical orthogonal polynomials on the simplex -- Orthogonal polynomials via symmetric functions -- Chebyshev polynomials to Type Ad -- Sobolev orthogonal polynomials on the unit ball -- 6. Root systems and coxeter groups -- Introduction and overview -- Root systems -- Invariant polynomials -- Differential-difference operators -- The intertwining operator -- The K-analogue of the exponential -- Invariant differential operators -- 7. Spherical harmonics associated with reflection groups -- h-Harmonic polynomials -- Inner products on polynomials -- Reproducing kernels and the poisson kernel -- Integration of the intertwining operator -- Example: Abelian group Z d/2 -- Example: Dihedral groups -- The dunk1 transform -- 8. Generalized classical orthogonal polynomials -- Generalized classical orthogonal polynomials on the ball -- Generalized classical orthogonal polynomials on the simplex -- Generalized hermite polynomials -- Generalized laguerre polynomials -- 9. Summability of orthogonal expansions -- General results on orthogonal expansions -- Orthogonal expansion on the sphere -- Orthogonal expansion on the ball -- Orthogonal expansion on the simplex -- Orthogonal expansion of Laguerre and Hermite polynomials -- Multiple Jacobi expansion -- 10. Orthogonal polynomials associated with symmetric groups -- Partitions, compositions and orderings -- Commuting self-adjoint operators -- The dual polynomials basis -- Sd-invariant subspaces -- Degree-changing recurrences -- Norm formulae -- Symmetric functions and jack polynomials -- Miscellaneous topics -- 11. Orthogonal polynomials associated with octahedral groups, and applications -- Operators of Type B -- Polynomial eigenfunctions of Type B -- Generalized binomial coefficients -- Hermite polynomials of Type B -- Calogero-Sutherland systems |
ctrlnum | (ZDB-20-CBO)CR9781107786134 (OCoLC)992914272 (DE-599)BVBBV043941704 |
dewey-full | 515/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.55 |
dewey-search | 515/.55 |
dewey-sort | 3515 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781107786134 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06446nmm a2200565zcb4500</leader><controlfield tag="001">BV043941704</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107786134</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-107-78613-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781107786134</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107786134</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992914272</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941704</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dunkl, Charles F.</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Orthogonal polynomials of several variables</subfield><subfield code="c">Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 420 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 155</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Background -- The gamma and beta functions -- Hypergeometric series -- Orthogonal polynomials of one variable -- Classical orthogonal polynomials -- Modified classical polynomials -- Notes -- 2. Orthogonal polynomials in two variables -- Introduction -- Product orthogonal polynomials -- Orthogonal polynomials on the unit disk -- Orthogonal polynomials on the triangle -- Orthogonal polynomials and differential equations -- Generating orthogonal polynomials of two variables -- First family of koornwinder polynomials -- A related family of orthogonal polynomials -- Second family of koornwinder polynomials -- 3. General properties of orthogonal polynomials in several variables -- Notation and preliminaries -- Moment funtionals and orthogonal polynomials -- The three-term relation -- Jacobi matrices and commuting operators -- Further properties of the three-term relation -- Reproducing kernels and fourier orthogonal series -- </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Common zeros of orthogonal polynomials in several variables -- Gaussian cubature formulae -- Notes -- 4. Orthogonal polynomials on the unit sphere -- Spherical harmonics -- Orthoginal structures on Sd and on Bd -- Orthogonal structures on Bd and on Sd+m-1 -- Orthogonal structure on the simplex -- Van der corput -- Schaake inequality -- 5. Examples of orthogonal polynomials in several variables -- Orthogonal polynomials for simple weight functions -- Classical orthogonal polynomials on the unit ball -- Classical orthogonal polynomials on the simplex -- Orthogonal polynomials via symmetric functions -- Chebyshev polynomials to Type Ad -- Sobolev orthogonal polynomials on the unit ball -- 6. Root systems and coxeter groups -- Introduction and overview -- Root systems -- Invariant polynomials -- Differential-difference operators -- The intertwining operator -- The K-analogue of the exponential -- Invariant differential operators -- </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7. Spherical harmonics associated with reflection groups -- h-Harmonic polynomials -- Inner products on polynomials -- Reproducing kernels and the poisson kernel -- Integration of the intertwining operator -- Example: Abelian group Z d/2 -- Example: Dihedral groups -- The dunk1 transform -- 8. Generalized classical orthogonal polynomials -- Generalized classical orthogonal polynomials on the ball -- Generalized classical orthogonal polynomials on the simplex -- Generalized hermite polynomials -- Generalized laguerre polynomials -- 9. Summability of orthogonal expansions -- General results on orthogonal expansions -- Orthogonal expansion on the sphere -- Orthogonal expansion on the ball -- Orthogonal expansion on the simplex -- Orthogonal expansion of Laguerre and Hermite polynomials -- Multiple Jacobi expansion -- 10. Orthogonal polynomials associated with symmetric groups -- Partitions, compositions and orderings -- Commuting self-adjoint operators -- The dual polynomials basis -- </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Sd-invariant subspaces -- Degree-changing recurrences -- Norm formulae -- Symmetric functions and jack polynomials -- Miscellaneous topics -- 11. Orthogonal polynomials associated with octahedral groups, and applications -- Operators of Type B -- Polynomial eigenfunctions of Type B -- Generalized binomial coefficients -- Hermite polynomials of Type B -- Calogero-Sutherland systems</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Serving both as an introduction to the subject and as a reference, this book presents the theory in elegant form and with modern concepts and notation. It covers the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains. The approach is a blend of classical analysis and symmetry group theoretic methods. Finite reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. This revised edition has been updated throughout to reflect recent developments in the field. It contains 25% new material, including two brand new chapters on orthogonal polynomials in two variables, which will be especially useful for applications, and orthogonal polynomials on the unit sphere. The most modern and complete treatment of the subject available, it will be useful to a wide audience of mathematicians and applied scientists, including physicists, chemists and engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of several real variables</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Yuan</subfield><subfield code="d">1957-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-07189-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781107786134</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350674</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107786134</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107786134</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941704 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9781107786134 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350674 |
oclc_num | 992914272 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvii, 420 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Dunkl, Charles F. 1941- Verfasser aut Orthogonal polynomials of several variables Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon Second edition Cambridge Cambridge University Press 2014 1 online resource (xvii, 420 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 155 Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1. Background -- The gamma and beta functions -- Hypergeometric series -- Orthogonal polynomials of one variable -- Classical orthogonal polynomials -- Modified classical polynomials -- Notes -- 2. Orthogonal polynomials in two variables -- Introduction -- Product orthogonal polynomials -- Orthogonal polynomials on the unit disk -- Orthogonal polynomials on the triangle -- Orthogonal polynomials and differential equations -- Generating orthogonal polynomials of two variables -- First family of koornwinder polynomials -- A related family of orthogonal polynomials -- Second family of koornwinder polynomials -- 3. General properties of orthogonal polynomials in several variables -- Notation and preliminaries -- Moment funtionals and orthogonal polynomials -- The three-term relation -- Jacobi matrices and commuting operators -- Further properties of the three-term relation -- Reproducing kernels and fourier orthogonal series -- Common zeros of orthogonal polynomials in several variables -- Gaussian cubature formulae -- Notes -- 4. Orthogonal polynomials on the unit sphere -- Spherical harmonics -- Orthoginal structures on Sd and on Bd -- Orthogonal structures on Bd and on Sd+m-1 -- Orthogonal structure on the simplex -- Van der corput -- Schaake inequality -- 5. Examples of orthogonal polynomials in several variables -- Orthogonal polynomials for simple weight functions -- Classical orthogonal polynomials on the unit ball -- Classical orthogonal polynomials on the simplex -- Orthogonal polynomials via symmetric functions -- Chebyshev polynomials to Type Ad -- Sobolev orthogonal polynomials on the unit ball -- 6. Root systems and coxeter groups -- Introduction and overview -- Root systems -- Invariant polynomials -- Differential-difference operators -- The intertwining operator -- The K-analogue of the exponential -- Invariant differential operators -- 7. Spherical harmonics associated with reflection groups -- h-Harmonic polynomials -- Inner products on polynomials -- Reproducing kernels and the poisson kernel -- Integration of the intertwining operator -- Example: Abelian group Z d/2 -- Example: Dihedral groups -- The dunk1 transform -- 8. Generalized classical orthogonal polynomials -- Generalized classical orthogonal polynomials on the ball -- Generalized classical orthogonal polynomials on the simplex -- Generalized hermite polynomials -- Generalized laguerre polynomials -- 9. Summability of orthogonal expansions -- General results on orthogonal expansions -- Orthogonal expansion on the sphere -- Orthogonal expansion on the ball -- Orthogonal expansion on the simplex -- Orthogonal expansion of Laguerre and Hermite polynomials -- Multiple Jacobi expansion -- 10. Orthogonal polynomials associated with symmetric groups -- Partitions, compositions and orderings -- Commuting self-adjoint operators -- The dual polynomials basis -- Sd-invariant subspaces -- Degree-changing recurrences -- Norm formulae -- Symmetric functions and jack polynomials -- Miscellaneous topics -- 11. Orthogonal polynomials associated with octahedral groups, and applications -- Operators of Type B -- Polynomial eigenfunctions of Type B -- Generalized binomial coefficients -- Hermite polynomials of Type B -- Calogero-Sutherland systems Serving both as an introduction to the subject and as a reference, this book presents the theory in elegant form and with modern concepts and notation. It covers the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains. The approach is a blend of classical analysis and symmetry group theoretic methods. Finite reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. This revised edition has been updated throughout to reflect recent developments in the field. It contains 25% new material, including two brand new chapters on orthogonal polynomials in two variables, which will be especially useful for applications, and orthogonal polynomials on the unit sphere. The most modern and complete treatment of the subject available, it will be useful to a wide audience of mathematicians and applied scientists, including physicists, chemists and engineers Orthogonal polynomials Functions of several real variables Orthogonale Polynome (DE-588)4172863-4 gnd rswk-swf Mehrere Variable (DE-588)4277015-4 gnd rswk-swf Orthogonale Polynome (DE-588)4172863-4 s Mehrere Variable (DE-588)4277015-4 s 1\p DE-604 Xu, Yuan 1957- Sonstige oth Erscheint auch als Druckausgabe 978-1-107-07189-6 https://doi.org/10.1017/CBO9781107786134 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dunkl, Charles F. 1941- Orthogonal polynomials of several variables 1. Background -- The gamma and beta functions -- Hypergeometric series -- Orthogonal polynomials of one variable -- Classical orthogonal polynomials -- Modified classical polynomials -- Notes -- 2. Orthogonal polynomials in two variables -- Introduction -- Product orthogonal polynomials -- Orthogonal polynomials on the unit disk -- Orthogonal polynomials on the triangle -- Orthogonal polynomials and differential equations -- Generating orthogonal polynomials of two variables -- First family of koornwinder polynomials -- A related family of orthogonal polynomials -- Second family of koornwinder polynomials -- 3. General properties of orthogonal polynomials in several variables -- Notation and preliminaries -- Moment funtionals and orthogonal polynomials -- The three-term relation -- Jacobi matrices and commuting operators -- Further properties of the three-term relation -- Reproducing kernels and fourier orthogonal series -- Common zeros of orthogonal polynomials in several variables -- Gaussian cubature formulae -- Notes -- 4. Orthogonal polynomials on the unit sphere -- Spherical harmonics -- Orthoginal structures on Sd and on Bd -- Orthogonal structures on Bd and on Sd+m-1 -- Orthogonal structure on the simplex -- Van der corput -- Schaake inequality -- 5. Examples of orthogonal polynomials in several variables -- Orthogonal polynomials for simple weight functions -- Classical orthogonal polynomials on the unit ball -- Classical orthogonal polynomials on the simplex -- Orthogonal polynomials via symmetric functions -- Chebyshev polynomials to Type Ad -- Sobolev orthogonal polynomials on the unit ball -- 6. Root systems and coxeter groups -- Introduction and overview -- Root systems -- Invariant polynomials -- Differential-difference operators -- The intertwining operator -- The K-analogue of the exponential -- Invariant differential operators -- 7. Spherical harmonics associated with reflection groups -- h-Harmonic polynomials -- Inner products on polynomials -- Reproducing kernels and the poisson kernel -- Integration of the intertwining operator -- Example: Abelian group Z d/2 -- Example: Dihedral groups -- The dunk1 transform -- 8. Generalized classical orthogonal polynomials -- Generalized classical orthogonal polynomials on the ball -- Generalized classical orthogonal polynomials on the simplex -- Generalized hermite polynomials -- Generalized laguerre polynomials -- 9. Summability of orthogonal expansions -- General results on orthogonal expansions -- Orthogonal expansion on the sphere -- Orthogonal expansion on the ball -- Orthogonal expansion on the simplex -- Orthogonal expansion of Laguerre and Hermite polynomials -- Multiple Jacobi expansion -- 10. Orthogonal polynomials associated with symmetric groups -- Partitions, compositions and orderings -- Commuting self-adjoint operators -- The dual polynomials basis -- Sd-invariant subspaces -- Degree-changing recurrences -- Norm formulae -- Symmetric functions and jack polynomials -- Miscellaneous topics -- 11. Orthogonal polynomials associated with octahedral groups, and applications -- Operators of Type B -- Polynomial eigenfunctions of Type B -- Generalized binomial coefficients -- Hermite polynomials of Type B -- Calogero-Sutherland systems Orthogonal polynomials Functions of several real variables Orthogonale Polynome (DE-588)4172863-4 gnd Mehrere Variable (DE-588)4277015-4 gnd |
subject_GND | (DE-588)4172863-4 (DE-588)4277015-4 |
title | Orthogonal polynomials of several variables |
title_auth | Orthogonal polynomials of several variables |
title_exact_search | Orthogonal polynomials of several variables |
title_full | Orthogonal polynomials of several variables Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon |
title_fullStr | Orthogonal polynomials of several variables Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon |
title_full_unstemmed | Orthogonal polynomials of several variables Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon |
title_short | Orthogonal polynomials of several variables |
title_sort | orthogonal polynomials of several variables |
topic | Orthogonal polynomials Functions of several real variables Orthogonale Polynome (DE-588)4172863-4 gnd Mehrere Variable (DE-588)4277015-4 gnd |
topic_facet | Orthogonal polynomials Functions of several real variables Orthogonale Polynome Mehrere Variable |
url | https://doi.org/10.1017/CBO9781107786134 |
work_keys_str_mv | AT dunklcharlesf orthogonalpolynomialsofseveralvariables AT xuyuan orthogonalpolynomialsofseveralvariables |